В решении.
Объяснение:
Решите задачу с составления уравнения. Разность двух чисел равна 25, а разность их квадратов 875. Найдите эти числа.
х - первое число.
у - второе число.
По условию задачи система уравнений:
х - у = 25
х² - у² = 875
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 25 + у
(25 + у)² - у² = 875
625 + 50у + у² - у² = 875
50у = 875 - 625
50у = 250
у = 250/50
у = 5 - второе число.
х = 25 + у
х = 25 + 5
х = 30 - первое число.
Проверка:
30 - 5 = 25, верно.
30² - 5² = 900 - 25 = 875, верно.
Докажем тождество:
(tga – sina) * (cos^2 a/sina+ctga) = sin^2 a;
Раскроем скобки в левой части тождества и тогда получим:
tga * cos^2 a/sina + tga * ctg a – sin a * cos^2 a/sina – sina * ctga = sin^2 a;
Используя основные тождества тригонометрии, упростим правую часть выражения.
Получаем:
sina/cosa * cos^2 a/sina + 1 – sina * cos^2 a/sina – sina * cosa/sina = sin^2 a;
Сократи дроби и останется:
1/1 * cosa/1 + 1 – 1 * cos^2 a/1 – 1 * cosa/1 = sin^2 a;
cos a + 1 – cos^2 a – cos a = sin^2 a;
1 – cos^2 a = sin^2 a;
sin^2 a = sin^2 a;
Тождество верно.
При а=х
х-а=0 х -любое числи значит а не ровно х
Теперь рассмотрим
ax^2+6x+5a=0
Если D>0 то оно имеет равно два корня
D=B^2-4ac=36-20a^2
36-20a^2>0
a<корень из 1,8
а не равно 0
а не равно х