В числителе сгруппируй в скобках a+b и a^2-b^2. Второе выражение есть квадрат разности, которое представляешь как произведение суммы а и b на их разность. Теперь ты можешь вынести за скобки а+b, а в скобках останется 1+а-b,т.е. а. С числителем разобрались. Теперь знаменатель. Опять группируешь в скобках a-b и а^2-2ab+b^2. Второе выражение есть ни что иное, как квадрат разности a и b. Так и запишем (a+b)^2 или (a+b)(a-b). Теперь можем вынести за скобки (a-b), а в скобках остается 1+a-b Это выражение сокращается. Дробь упростилась до вида (a+d)/(a-b)/ Далее подставляй на место а и b числовые значения и решай.
Значения на концах отрезка:
y(-3) = (9 + 8)/(-3-1) = -17/4 = -4,25
y(0) = (0 + 8)/(0 - 1) = -8/1 = -8
Точка разрыва x = 1 не входит в промежуток [-3; 0] и нас не интересует.
Экстремум
y'= \frac{2x(x-1) - (x^2+8)*1}{(x-1)^2} = \frac{2x^2-2x-x^2-8}{(x-1)^2} =\frac{x^2-2x-8}{(x-1)^2} = 0y
′
=
(x−1)
2
2x(x−1)−(x
2
+8)∗1
=
(x−1)
2
2x
2
−2x−x
2
−8
=
(x−1)
2
x
2
−2x−8
=0
x^2 - 2x - 8 = (x - 4)(x + 2) = 0
x1 = -2; y(-2)= (4 + 8)/(-2 - 1) = 12/(-3) = -4
x2 = 4 - не входит в промежуток [-3; 0]
ответ: y(-2) = -4 - наибольшее, y(0) = -8 - наименьшее.