Раско́л Ру́сской це́ркви — церковный раскол в Русской православной церкви, начавшийся в 1650-х годах в Москве. Связан с реформой патриарха Никона, направленной на внесение изменений в богослужебные книги московской печати и некоторые обряды в целях их унификации с современными греческими[1][2][3].
Реформа осуществлялась при участии и поддержке царя Алексея Михайловича и некоторых других православных патриархов, была одобрена и подтверждена постановлениями ряда соборов, проходивших в Москве в 1650—1680-х годах. Противники реформы, впоследствии получившие название «старообрядцы», были преданы анафеме[4] на Московском соборе 1656 года (только держащиеся двуперстного крестного знамения) и на Большом Московском соборе 1666—1667 годов[1][2][5]. В результате появились старообрядческие группы, впоследствии разделившиеся на многочисленные согласия[3].
Объяснение:
Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная
( 1 ; 1 )
y + x = 2
2x - y = 1
y = 2 -x
y=2x-1
y = 2 -x
x 0 2
y 2 0
y=2x-1
x 0 1
y -1 1