1)
30% числа k = 0,3a
35% числа p = 0,35p
0,3k > 0,35p на 20
Первое уравнение:
0,3k - 0,35p = 20
2)
20% числа k = 0,2а
30% числа p = 0,3р
0,3р > 0,2k на 8
Второе уравнение:
0,2k + 8 = 0,3p
3)
Решаем систему.
{0,3k-0,35р = 20
{0,2k - 0,3р = - 8
Первое умножим на 2, а второе умножим на (-3)
{0,6k-0,7р = 40
{-0,6k+0,9р = 24
Сложим
0,6k-0,7р -0,6k+0,9р = 40+24
0,2р = 64
р = 64 : 0,2
р = 320
В первое уравнение 0,3k - 0,35p = 20 подставим р = 320.
0,3k - 0,35·320 = 20
0,3k - 112 = 20
0,3k = 112 + 20
0,3k = 132
k = 132 : 0,3
k = 440
ответ: k = 440;
р = 320.
a1(1) = 1; d1 = 2
Миша - тоже по арифметической прогрессии
a2(1) = 2; d2 = 2
Всего Боря взял
S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60
7 < n < 8
Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13.
И у Бори получилось S1(7) = 7^2 = 49 конфет.
Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11.
Миша последний раз взял 14. Это тоже 7-ой раз.
Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56
Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11
На каждом этаже квартир больше 2, но меньше 7, то есть 3.
Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира.
Квартира номер 42 - последняя во 2 подъезде.
Квартир с номерами больше 42 во 2 подъезде нет.
Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры.
Квартира номер 42 - последняя на 3 этаже.