М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
яЭльф
яЭльф
03.12.2021 23:45 •  Алгебра

Для пошива 16 платьев необходимо 56 м ткани.сколько таких платьев можно пошить из 42 м ткани?

👇
Ответ:
RomanReigns2000
RomanReigns2000
03.12.2021

1)56:16=3.5м- одно платье

2)42:3.5=12-платьев можно сшить

ответ:12

4,8(69 оценок)
Открыть все ответы
Ответ:
Heh6
Heh6
03.12.2021

Какой формулой пользоваться значения не имеет. На фотографиях представлены решения уравнения \sin(t) = \alpha.

Если нарисовать числовую окружность, то значение \sin(t) = \alpha есть координата точки t по оси oy, ведь для любой точки числовой окружности справедливо, что t(x; \: y), \: x = \cos(t), \: y = \sin(t), т.е. точка t \in \mathbb R имеет координаты (\cos(t); \: \sin(t)).  

Если провести прямую, параллельную оси ox через точку \sin(t), то она пересечётся с числовой окружностью в каких-то точках.  

Чтобы было понятнее, советую нарисовать окружность радиусом R = 1 и центром в точке O(0;0) и отмечать всё, о чём я пишу.  

Теперь рассмотрим эти точки пересечения.

Если 0, то пересечения будут в первой и второй четвертях.

Если -1, то пересечения будут в третьей и четвёртой четвертях.

Если \sin(t) = 0, то пересечений тоже два и это 0 и \pi.

Если \sin(t) = 1, то пересечение только одно, при чём точка пересечения будет и точкой касания, и равна она \frac{\pi}{2}.

Если же \sin(t) = -1, то пересечение тоже одно, тоже является точкой касания, но значение равно -\frac{\pi}{2}.

А теперь вспомним определение арксинуса. Арксинусом числа \alpha называют такой угол t \in \lbrack 0; \: \frac{\pi}{2}\rbrack, что \sin(t) = \alpha. Главное здесь то, что t может быть углом только первой четверти.  

Отсюда же следует, что t=\arcsin(\alpha),\: t \in \lbrack 0; \: \frac{\pi}{2}\rbrack.

Это прекрасно работает для \sin(t) = 1, ведь \arcsin(1) = \frac{\pi}{2}.

Но только недавно мы проверили, что у нас может быть и не одно, а два решения. Как поступить в случае, если арксинус работает только для углов первой четверти, а нам нужно, чтобы он работал во второй? ответ прост. \sin(t) - это число, а \arcsin(\alpha) - угол.  

Пусть прямая y= \alpha пересекается с окружностью в точках A в первой четверти и B во второй четверти, а точку \alpha на оси oy мы обзовём C. Рассмотрим треугольники AOC и BOC, в них:

OC - отрезок, лежащий на оси oy, а AB - хорда, параллельная оси ox, значит OC \perp AB, по аксиоме о перпендикулярности прямых. Следовательно, треугольники AOC и BOC - прямоугольные по определению.OC - отрезок, лежащий на радиусе и OC \perp AB, значит AO = OB по свойству радиуса.OC - общая сторона.

Треугольники AOC и BOC равны по двум катетам. Из этого следует и то, что их соответственные углы равны. Т.е. угол COA и угол BOC.

Но углы мы отсчитываем от точки (0; \: 1), обзовём её K. Тогда угол AOK = \frac{\pi}{2} - COA. А это угол t первой четверти.  

BOK = 2COA + t\\2COA + 2t =\pi\\BOK + t = \pi\\BOK = \pi - t = \pi - arcsin(\alpha)

А угол BOK - искомый угол второй четверти.

Как нам известно, все числа на числовой окружности получаются с поворота на определённый угол, пусть \gamma - этот угол. И если мы сделаем полный оборот, то мы хоть и придём в ту же самую точку, но вот число уже будет другое, ведь поворачивались мы на другой угол, равный \gamma + 2\pi. Таким образом, чтобы описать все числа, находящиеся в точке на окружности с координатами (\cos(t);\: \sin(t)) надо добавить 2\pi n, где n - целое (чтобы получились полные обороты).

Вот так и получается первая формула.

Что до второй, то тут всё проще. Выводить её не буду, и так ответ уже километровый. В ней всё работает на чётности n. Если n - чётное, то формула трансформируется в \arcsin(\alpha) + 2\pi \times p, \: 2p = n, \: p \in \mathbb{Z}, если нечётное, то в -\arcsin(\alpha) + \pi \times (2p+1), \: (2p+1) = n, \: p \in \mathbb{Z}, ну а -\arcsin(\alpha) + \pi \times (2p+1) = \pi - \arcsin(\alpha) + 2\pi \times p. Т.е. это тоже самое, только записанное в одну строчку. Использовать вторую формулу не советую. Она менее интуитивно понятная. Но если в ней разобраться, то решение уменьшается в размере, это правда.

Как-то так. Фу-у-у-ух. Много. Очень Много Букв.

P.S. Прости за задержку.

4,6(58 оценок)
Ответ:
kupcovaSvetl
kupcovaSvetl
03.12.2021

ответ:  KN= 3 см,  MN=5 см,   KM= 10 см.

РKNM=  18 см.

Объяснение:

Пусть одна сторона равна 2х. Тогда вторая равна 4х, а третья - 6х.

Р=a+b+c, где а=2х, b=4x, c=6x.

2x+4x+6x=60;

12x=60;

x=5;

a=2x=2*5=10 см.

b=4*5=20 см.  

с=6*5=30 см.

***

Точки середины сторон  делят их на равные отрезки.

По теореме Фалеса имеют место отношения:

АК/АВ=BN/DC=AM/AC; (MN║AB; KM║BC; KN║AC).

MN=а/2=10/2=5 - одна сторона искомого треугольника.

MK=b/2=20/2=10 см - вторая сторона треугольника.

NK=с/2=6/2=3 см - третья сторона треугольника.

P MKN=MK+KN+MN=5+10+3=18 см.

4,6(93 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ