Объяснение:
1) -y²+6y-12
вынесем минус за скобку
-y²+6y-12=-(y²-6y+12)
выделим в скобке полный квадрат, для этого добавим и отнимем 9
-y²+6y-12=-(y²-6y+12)=-(y²-6y+9-9+12)
По формуле сокращенного умножения y²-6y+9=(у-3)²
-y²+6y-12=-(y²-6y+12)=-(y²-6y+9-9+12)=-((у-3)²-9+12)=-((у-3)²+3)
так как (у-3)²≥0 и 3>0 то (у-3)²+3>0 ⇒
-((у-3)²+3)<0
так как -y²+6y-12=-((у-3)²+3) и -((у-3)²+3)<0
то -y²+6y-12<0
2) Другой
Графиком функции y=-x²+6x-12 является парабола
так как a=-1 то ветки направлены вниз
координата вершины x=-b/2a=-6/-2=3
y(3)=-9+18-12=-3
максимальное значение функции y=-x²+6x-12 это -3
⇒ -x²+6x-12≤-3
так как -3<0 то
-x²+6x-12<0
заменим х на у
получим
-y²+6y-12<0
Замечание
В условии задачи надо убрать =0
так как трехчлен принимает только отрицательные значения то он не может быть равен 0
Тогда 36/(12-х) время в пути лодки (лодка плыла против течения реки)
36/х время в пути плота (плот плыл по течению реки)
Уравнение:
36/х - 36/(12-х) =8
36/х - 36/(12-х) -8 = 0
Приводим к общему знаменателю (12-х)*х , получаем в числителе:
36(12-х)-36х-8(12х-х²)=0
При х не равном 12 и 0 получаем:
432-36х-36х-96х+8х²=0
8х²-168х+432=0
D=14400
х=3 - корень уравнения
х=18 - не является корнем (т.к. 12-18= - 6 км/ч - не может быть)
ответ. скорость плота 3 км/ч