М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lolipop310
lolipop310
20.01.2021 10:15 •  Алгебра

Решите системы уравнений; 1)х-у=12; х=4у; 2)х+у=36; х-у=3.

👇
Ответ:

1) подставляем вместо х в первое уравнение второе уравнение

4у-у=12; 3у=12 у=4.  находим х       х=4у=4*4=16

ответ (16;4)

2) складываем почленно уравнение 2х=39  х=19,5     у=х-3=19,5-3=  16,5

ответ (19,5; 16,5) 

4,7(3 оценок)
Ответ:
VladKot133
VladKot133
20.01.2021

1) x-y=12

x=4y

 

4y-y=12

3y=12

y=4

x=4*4=16

2) x+y=36

x-y=3

 

x=3+y

3+y+y=36

3+2y=36

2y=36-3

2y=33

y=16.5

x=16.5+3=19.5

 

 

4,5(29 оценок)
Открыть все ответы
Ответ:
peschanskaakris
peschanskaakris
20.01.2021
Дана функция:y=x^2+2x-8

Что бы построить график данной функции, исследуем данную функцию:

1. Область определения:
Так как данная функция имеет смысл при любом х. То:
D(y)=(-\infty,+\infty)

2. Область значения:
Так как данная функция - квадратичная, а так же, главный коэффициент а положителен.То, график данной функции - парабола и ее ветви направлены вверх.

Следовательно, область значения данной квадратичной функции находится следующим образом (при а>0):
\displaystyle E(y)=\left[- \frac{D}{4a},+\infty\right) - где D дискриминант.

Найдем дискриминант:
D=b^2-4ac=4+32=36

Теперь находим саму область:
\displaystyle E(y)=\left[-\frac{36}{4},+\infty \right)=[-9,+\infty)

3. Нули функции:
Всё что требуется , это решить уравнение.

\displaystyle x^2+2x-8=0\\\\x_{1,2}= \frac{-2\pm \sqrt{36} }{2} = \frac{-2\pm6}{2}=(-4),2

Следовательно, функция равна нулю в следующих точках:
(2,0)\\(-4,0)

4. Зная нули функции, найдем промежутки положительных и отрицательных значений.
Чертим координатную прямую, на ней отмечаем корни уравнения, записываем 3 получившийся промежутка и находим на данных промежутках знак функции:
(-\infty,-4) \rightarrow +\\(-4,2)\rightarrow -\\(2,+\infty)\rightarrow +

То есть:
f\ \textgreater \ 0 \rightarrow (-\infty,-4)\cup(2,+\infty)\\f\ \textless \ 0\rightarrow (-4,2)

5. Промежутки возрастания и убывания.
Для этого найдем вершину параболы:
\displaystyle x_{\text{Bep.}}=- \frac{b}{2a} =- \frac{2}{2} =-1\\\\y_{\text{Bep.}}=(-1)^2+2\cdot(-1)-8=-9

Промежуток убывания:
(-\infty,-1]

Промежуток возрастания:
[-1,+\infty)

Если вы изучали понятие экстремума, то:
---------------------------------------------------------------
6. Экстремум функции.
Так как а>0 и функция квадратичная. То вершина является минимумом данной функции.
Следовательно:
y(x)_{\min}=y(-1)=-9
---------------------------------------------------------------
7. Ось симметрии

Зная вершину, имеем следующее уравнение оси симметрии:
x=-1

Основываясь на данных, строим график данной функции. (во вложении).

Плстройте график функции y=x в квадрате +2x-8
4,7(12 оценок)
Ответ:
1)На графике у тебя парабола нарисована. Чертишь прямую у = -1 и рассматриваешь ту часть графика, которая оказывается над этой прямой. Вот вся та часть и есть решение. Запиши интервал для х, который соответствует той части графика и это будет ответ.
ДА. Так как знак больше иои РАВНО, то концы интервала будут включены. (квадратные скобочки)
2)
3)Два неравенства называются равносильными, если множества их решений совпадают (в том числе, неравенства, не имеющие решений, считаются равносильными)
4)-
5)Если дискриминант меньше нуля, значит график функции не пересекает ось ОХ! ! В данном случае, парабола будет направлена ветками вверх, следовательно в этом неравенство нет решения.
Если бы 3x^2 - 8x + 14 > 0, то решением было бы x Є R, а здесь решения нет!!
( Рациональное неравенство – это неравенство с переменными, обе части которого есть рациональные выражения)
7)

Поставим перед собой задачу: пусть нам надо решить целое рациональное неравенство с одной переменной x вида r(x)<s(x) (знак неравенства, естественно, может быть иным ≤, >, ≥), где r(x) и s(x) – некоторые целые рациональные выражения. Для ее решения будем использовать равносильные преобразования неравенства.

Перенесем выражение из правой части в левую, что нас приведет к равносильному неравенству вида r(x)−s(x)<0 (≤, >, ≥) с нулем справа. Очевидно, что выражениеr(x)−s(x), образовавшееся в левой части, тоже целое, а известно, что можно любоецелое выражение преобразовать в многочлен. Преобразовав выражение r(x)−s(x) в тождественно равный ему многочлен h(x) (здесь заметим, что выражения r(x)−s(x) иh(x) имеют одинаковую область допустимых значений переменной x), мы перейдем к равносильному неравенству h(x)<0 (≤, >, ≥).

В простейших случаях проделанных преобразований будет достаточно, чтобы получить искомое решение, так как они приведут нас от исходного целого рационального неравенства к неравенству, которое мы умеем решать, например, к линейному или квадратному. Рассмотрим примеры.

4,6(59 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ