М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Neznаykа
Neznаykа
07.07.2021 14:26 •  Алгебра

Х^2-7х^2-18=0:
решите уравнение​

👇
Ответ:
VaniLikaK
VaniLikaK
07.07.2021

X^2(1-7)=18

X^2=18/(-6)

X^2=-3

Левую и правую часть до ножом на - 1

-x^2=3

-x= корень (3)

-x=1.73

X=-1.73

4,7(16 оценок)
Открыть все ответы
Ответ:
Sanя7184214
Sanя7184214
07.07.2021
Попробую решить)
Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно.
Значит, при х = -4,5 верно следующее неравенство:
x^2+9x+a<0 ( поменяли знак неравенства на противоположный).
Подставим "-4,5" вместо икса и получим:
(-4,5)^2+9*(-4,5)+a<0
20,25-40,5+a<0
-20,25+a<0
a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный).
Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы.
ответ: a> 20,25.
4,6(38 оценок)
Ответ:
danchik1106
danchik1106
07.07.2021
1. Область определения функции (-бесконечность; 3) и (3;бесконечность)
2. Множество значений функции (-бесконечность2] [10; бесконечность)
3. Проверим является ли данная функция четной или нечетной:
у (х) = (x^2-5)/(х-3)
y(-х) = (x^2-5)/(-х-3) так как у (х) не =у (-х) , и у (-х) не=-у (х) , то данная функция не является ни четной ни нечетной.
4. Найдем промежутки возрастания и убывания функции и точки экстремума.
y'(x) = (x^2-6x+5)/(x-3)^2; y'(x) = 0
(x^2-6x+5)/(x-3)^2=0
x^2-6x+5=0
х1=5; х2=1.
Данные стационарные точки и точка разрыва, разбили числовую прямую на 4 промежутка
Так как на промежутках (1;3) и (3;5) производная отрицательна, то на этих промежутках функция убывает
Так как на промежутках (-бесконечность; 1) и (2;бесконечность) производная положительна, то на этих прмежутках функция возрастает.
х=5 точка минимума, у (5) = 10
х=1 точка максимума, у (1) = 2
5. Найдем точки перегиба функции и промежутки выпуклости:
y"(x) = 8/(х-3)^3; y"(x)=0
8/(х-3)^3=0
уравнение не имеет корней.
Так как на промежутке (3;бесконечность) вторая производная положительна, то график направлен выпуклостью вниз
Так ак на промежутке (-бесконечность; 3) вторая производная отрицательна то график направлен выпуклостью вверх.
Точек перегиба функция не имеет.
6. Проверим имеет ли график функции асмптоты:
а) вертикальные: Для этого найдем односторонние пределы в точке разрыва х=3
lim(x стремится к 3 по недостатку) ((x^2-5)/(х-3)=-бесконечность
lim(x стремится к 3 по избытку) ((x^2-5)/(х-3)=бесконечность
Следовательно прямая х=3 является вертикальной асимптотой.
б) налонные вида у=кх+в:
к=lim y(x)/x = lim(x стремится к бесконечности) ((x^2-5)/(х (х-3))=1
в = lim (y(x)-kx) = lim ((x^2-5)/(х-3)-х) =lim(3x-5)/(x-3)=3
Cледовательно прямая у=х+3 является наклонной асимптотой.
7. все строй график. Удачи!!
4,5(7 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ