натуральное число - это целое и положительное, минимальное натуральное число это 1
пусть искомое число Х, тогда х / (3/25) = 25х/3, то есть нужно такое число х которое при умножении на 25 делилось бы нацело на 3. 25 на 3 не делится, тогда х должен делится нацело на 3, чтобы дробь сократилась. Минимальное натуральное число кратное 3 это и есть 3.
Аналогично втоорой случай х / (9/10) = 10х/9
Минимальное натурально число кратное 9 это и есть 9.
Если брать одно число которое подходило бы к обоим случаем тогда это будет 9
1. поработаем со знаменателем первой дроби. это формула сокращенного умножения. (х+2)(х-2)- будет являться общим знаменателем.
2. 3 переносим в левую часть, поменяв знак на противоложный, тк переносим через =. подгоним все под общий знаменатель и получим:
4-(х+2)-3(х²-4)\(х-2)(х+2)=0
3. дробь равна 0, когда числитель равен 0, а знаменатель не равен. потому знаменатель отбрасываем. НО. делить на 0 нельзя, поэтому нельзя, чтобы в знаменателе получился 0. х не равно +-2. получим:
4-(х+2)-3(х²-4)=0
4. раскроем скобки. если перед скобкой стоит -, то все знаки меняются на противоположные, а скобки убираются. если перед скобкой стоит умножение, то нужно член, стоящий перед скобкой, умножить на каждый член в скобки и скобки уберутся. получим
4-х-2-3х²+12=0
5. приведем подобные и получим:
-3х²-х+14=0
для удобства умножим все на -1 ( не обязательно):
3х²+х-14=0
6.D= в²-4ас
D= 1+168=169=13²
х1=-1+13\6=2
х2= -1-13\6= -7\3
ответ: -7\3, 2
Значит первый слесарь работал 5ч, а второй 4ч
5+4=9часов всего два слесаря
9*100/40=22,5ч выполнят весь заказ работая вдвоем
Пусть второй работал хч, а первый х+5
х+х+5=22,5
2х=17,5
х=8,75ч=8ч45мин работал второй
8,75+5=13,75ч=13ч45 мин работал второй