категория, выражающая равенство, одинаковость предмета, явления с самим собой или равенство нескольких предметов. О предметах А и В говорят, что они являются тождественными, одними и теми же, неразличимыми, если и только если все свойства (и отношения) , к-рые характеризуют А, характеризуют и В, и наоборот (закон Лейбница) . Однако, поскольку материальная действительность постоянно изменяется, абсолютно тождественных самим себе предметов, даже в их существенных, осн. свойствах, не бывает. Т. является не абстрактным, а конкретным, т. е. Содержащим внутренние различия, противоречия, постоянно “снимающим” себя в процессе развития, зависящим от данных условий. Само отождествление отдельных предметов требует их предварительного отличия от других предметов; с др. стороны, часто приходится отождествлять различные предметы (напр. , с целью создания их классификаций) . Это означает, что Т. неразрывно связано с различием и является относительным. Всякое Т. вещей временно, преходяще, а их развитие, изменение абсолютно. В математике, где мы оперируем с абстракциями (числами, фигурами) , рассматриваемыми вне времени, вне их измерения, закон Лейбница действует без особых ограничений. В точных же опытных науках абстрактное, т. е. отвлекающееся от развития вещей Т. , используется с ограничениями, и то лишь потому, что в процессе познания мы прибегаем в известных условиях к идеализации и упрощению действительности. С подобными ограничениями формулируется и логический-гожйесгва закон. Вроде так
1) a= 2
2) a= -1
Объяснение:
Применим теорему Виета: если x₁ и x₂ корни уравнения x²+p·x+q=0, то
x₁ + x₂ = -p и x₁ · x₂ = q.
По условию, корни уравнения являются противоположными числами, то есть x₁ = -x₂, тогда x₁≠0 и x₂≠0 и:
-p = x₁ + x₂ = (-x₂) + x₂=0 и q = x₁ · x₂ = (-x₂) · x₂ = -x₂² <0.
Отсюда: p=0 и q<0.
1) Если дано x²+(a-2)·x+(a-6)=0, то по вышесказанному
p=a-2=0 ⇒ a=2 и q=a-6=2-6=-4<0. Тогда
x²+(2-6)=0 ⇔ x²=4 ⇔ x=±2.
2) Если дано x²+(a+1)·x+(a-8)=0, то по вышесказанному
p=a+1=0 ⇒ a= -1 и q=a-8=-1-8=-9<0. Тогда
x²+(-1-8)=0 ⇔ x²=9 ⇔ x=±3.