Y = x^2 + 4x = 2 Здесь Все под один знак равно: y = x^2 + 4x - 2 Тогда графиком данной функции будет являться парабола! Приравниваем к 0 правую часть функции: x^2 + 4x - 2 = 0 Находим 2 точки параболы: m и n m = -b дробная черта 2a. ; -4 дроб. черта 2 = -2 n = 4 -8 -2 = -6 Получились 2 точки: A (-2;0) и B (-6;0); Далее находим центральную точку нашей параболы путем нахождения дискриминанта: D = (b/2)^2 - ac. ("/"-дробная черта) D = 4 - 1 (-2) D = 6 Это примернооо 2,4 квадратный корень. x1/2 = -b/2 +- корень из D и все разделить на a. x1/2 = -2 +- 2,4 /// 1 = / x1 = 0,4; x2 = -4.4 Дальше надо начертить систему координат, и расставить эти точки: A (-2;0); B (-6;0); C (-4,4; 0,4);
Неравенство loga(x)(f(x)>0 равносильно выполнению следующих условий: a(x)>0, f(x)>0, (a(x)-1)(f(x)-1)>0 f(x)=I4x-5I; a(x)=-4x^2+12x-8 У нас f(x)>0, если x≠5/4 Найдем, при каких значениях x a(x)>0 -4x^2+12x-8>0⇒x^2-3x+2<0 Решим уравнение x^2-3x+2=0. По теореме Виетта x1+x2=3; x1*x2=2⇒ x1=1; x2=2 Эти значения разбивают числовую прямую на 3 интервала: (-∞;1); (1;2); (2;+∞) По методу интервалов в крайнем справа будет +, дальше идет чередование Решением нашего нер-ва является интервал (1;2) Рассмотрим 2 случая 1) 4x-5>0⇒x>5/4⇒I4x-5I=4x-5 (a(x)-1)*(f(x)-1)=(-4x^2+12x-8-1)*(4x-5-1)>0⇒(4x^2-12x+9)*(4x-6)<0⇒ (2x-3)^2*(4x-6)⇒<0 (2x-3)^2>0, если x≠3/2;⇒ 4x-6<0⇒x<3/2⇒ 5/4<x<3/2 - решение нер-ва - попадают в интервал (1;2) ) 4x-5<0⇒x<5/4⇒I4x-5I=5-4x (a(x)-1)*(f(x)-1)=(-4x^2+12x-8-1)*(5-4x-1)>0⇒(4x^2-12x+9)*(4-4x)<0⇒ (2x-3)^2*4(1-x)⇒<0⇒(2x-3)^2*(1-x)⇒<0 (2x-3)^2>0, если x≠3/2;⇒ 1-x<0⇒x>1⇒ 1<x<5/4- решение нер-ва - попадают в интервал (1;2) ответ: x∈(1;5/4)∨(5/4;3/2)
-8
Объяснение:
вместо y подставляем 5 и решаем уравнение:
5=-3-x
x=-8