11.12.2020 алгебра 25.3. Постройте в одной координатной плоскости графики функций: 1) у = 4x² и y = 1/4х²; 2) y=-x² и у= 1/3х²; 3) у = 2х2 и у = 5х2.
Четыре числа образуют геометрическую прогрессию. Если к ним прибавить соответственно 6, 12, 14 и 8, тогда получим четыре числа, которые образуют арифметическую прогрессию. Найди числа, которые образуют геометрическую прогрессию.
1) В простейшем случае достаточно выбрать один центр и из него построить 24 дороги ко всем остальным деревням. Все деревни будут связаны друг с другом через центр. Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога, тогда рассуждаем так. Мы проводим от каждой из 25 деревень дороги ко всем 24. Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А. Значит, количество дорог надо разделить на 2. 25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6) Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно. Корни я нашел с Вольфрам Альфа.
Четыре числа образуют геометрическую прогрессию. Если к ним прибавить соответственно 6, 12, 14 и 8, тогда получим четыре числа, которые образуют арифметическую прогрессию. Найди числа, которые образуют геометрическую прогрессию.
знаменатель геометрической прогрессии: q= 2
члены геометрической прогрессии :
b1= 4
b2=8
b3= 16
b4=32
Решение
b₁; b₁·q; b₁·q²; b₁·q³ геометрическая прогрессия
тогда
b₁+6; b₁·q+12; b₁·q; b₁·q³ арифметическая прогрессия
по характеристическому свойству арифметической прогрессии
q ≠ 1
разделим второе уравнение на первое
q = 2