Вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом[1].
Вектор с началом в точке {\displaystyle A}A и концом в точке {\displaystyle B}B принято обозначать как {\displaystyle {\overrightarrow {AB}}}\overrightarrow {AB}. Векторы также могут обозначаться малыми латинскими буквами со стрелкой (иногда — чёрточкой) над ними, например {\displaystyle {\vec {a}}}{\vec {a}}. Другой рас записи: написание символа вектора прямым жирным шрифтом: {\displaystyle \mathbf {a} }{\mathbf {a}}.
Існують скінченні і нескінченні десяткові дроби — періодичні і неперіодичні. Так число, яке може бути точно виражене у вигляді десяткового дробу називається скінченним періодичним дробом. Наприклад дріб 1/2 можна представити десятковим дробом 0,5. А при дробі 1/3 ми одержуємо 0,3333... — це нескінченний періодичний дріб з періодом 3, по іншому записують як 0(3). Прикладом нескінченного неперіодичного числа є число π — 3,141592...
Періодичний десятковий дріб називається чистим періодичним дробом, якщо його період (група цифр, що повторюються) починається відразу після коми, а період може містити будь-яке кінцеве число цифр. Так, дріб 1,(3) — чистий періодичний дріб. Якщо періодичний десятковий дріб містить ще число, поміщене між цілою частиною і періодом, то такий періодичний дріб називається змішаним; число періодичного дробу, що стоїть між цілою частиною і періодом, називається передперіодом цього дробу.
Очевидно, що всякий періодичний дріб є раціональним числом вигляду , де , . Вірно і зворотне твердження: всяке раціональне число вигляду  можна представити у вигляді десяткового періодичного дробу.