М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Diana22855
Diana22855
12.05.2023 16:46 •  Алгебра

Новогодняя задача про тортик. Пусть имеются круглые тортики радиусом R с постоянной высотой.

Маша режет тортик традиционно - разрезами, проходящими через центр тортика на 8 равных частей.

Даша хочет резать тортик по-научному, то есть вырезая куски из середины, а затем сдвигать оставшиеся части, чтобы тортик не засыхал.

На каком расстоянии от оси симметрии тортика (в долях от R) нужно проводить параллельные этой оси разрезы, чтобы первый кусок, отрезанный Дашей был симметричным относительно своих центральных осей и совпадал по объему с кусками, полученными у Маши?

Для решения трансцендентного уравнения построить график средствами Microsoft Excel.

Записать общий вид трансцендентного уравнения для случая разрезания тортика Машей на N частей.

👇
Ответ:
tim228904
tim228904
12.05.2023

Так как тортики имеют постоянную высоту, то вместо рассмотрения объемов буем рассматривать соответствующие площади оснований.

Площадь основания тортика радиуса R:

S=\pi R^2

Тогда, площадь основания одного Машиного куска:

S=\dfrac{\pi R^2}{8}

Рассмотрим Дашин кусок (на картинке). Вертикальной и горизонтальной прямой разобьем его на 4 равные части и рассмотрим одну из них. Проведем еще одну прямую так, чтобы эта часть разделилась на сектор и прямоугольные треугольник.

Рассмотрим полученный сектор. Пусть α - угол между радиусами, образующими сектор. Тогда, площадь сектора:

S_1=\dfrac{\pi R^2}{2\pi} \cdot \alpha

Рассмотрим прямоугольный треугольник. Зная, что накрест лежащие углы при параллельных прямых равны, получим, что один из острых углов этого треугольника равен α. Выразим через этот угол и известный радиус катеты треугольника:

\sin \alpha=\dfrac{d}{R} \Rightarrow d=R\sin \alpha

\cos \alpha=\dfrac{x}{R} \Rightarrow x=R\cos \alpha

Площадь прямоугольного треугольника:

S_2=\dfrac{dx}{2} =\dfrac{R\sin \alpha \cdot R\cos\alpha }{2} =\dfrac{R^2\sin \alpha \cos\alpha }{2}

Тогда, запишем сумму, представляющую площадь основания четверти кусочка Даши:

\dfrac{S}{4}=S_1+S_2=\dfrac{\pi R^2}{2\pi} \cdot \alpha+\dfrac{R^2\sin \alpha \cos\alpha }{2}

Отсюда площадь основания кусочка Даши:

S=\dfrac{4\pi R^2}{2\pi} \cdot \alpha+\dfrac{4R^2\sin \alpha \cos\alpha }{2}

По условию куски Маши и Даши должны быть одинаковы. значит:

\dfrac{\pi R^2}{8}=\dfrac{4\pi R^2}{2\pi} \cdot \alpha+\dfrac{4R^2\sin \alpha \cos\alpha }{2}

\dfrac{\pi}{8}=\dfrac{4\pi}{2\pi} \cdot \alpha+\dfrac{4\sin \alpha \cos\alpha }{2}

\dfrac{\pi}{8}=2\alpha+\sin2\alpha

2\alpha+\sin2\alpha=\dfrac{\pi}{8}

2\alpha+\sin2\alpha-\dfrac{\pi}{8}=0

Для решения уравнения построим график в Microsoft Excel (картинка).

По графику определим, что равенство выполняется при \alpha \approx 0.1.

График при x\to0 напоминает прямую, так как в данном случае имеем место быть первый замечательный предел.

Действительно, можно считать, что рассматриваемый угол α мал. Тогда: \lim\limits_{\alpha \to0}\dfrac{\sin2\alpha }{2\alpha } в соответствии с первым замечательным пределом. Тогда от имеющегося уравнения можно перейти к более простому:

2\alpha+\sin2\alpha-\dfrac{\pi}{8}=0

2\alpha+2\alpha-\dfrac{\pi}{8}\approx0

4\alpha\approx\dfrac{\pi}{8}

\alpha\approx\dfrac{\pi}{32}\approx0.098\approx0.1

Искомое расстояние от оси симметрии соответствует уже вводившейся величине d:

d=R\sin \alpha=R\sin 0.1

По той же причине синус малого аргумента можно заменить самим этим аргументом. Получим:

\boxed{d=0.1R}

В частности, для практических целей выполненные приближенные допущения вполне допустимы и удачны.

Вернемся к полученному ранее уравнению:

2\alpha+\sin2\alpha=\dfrac{\pi}{8}

Заметим, что информация о том, что Маша разрезала свой тортик на 8 частей, сосредоточена в знаменателе правой части. Поэтому, если изначально Маша разрезала тортик на N частей, то проведя аналогичные рассуждения мы получим уравнение вида:

\boxed{2\alpha+\sin2\alpha=\dfrac{\pi}{N}}


Новогодняя задача про тортик. Пусть имеются круглые тортики радиусом R с постоянной высотой. Маша ре
Новогодняя задача про тортик. Пусть имеются круглые тортики радиусом R с постоянной высотой. Маша ре
4,5(29 оценок)
Открыть все ответы
Ответ:
kisnasty951
kisnasty951
12.05.2023
1) Вася проезжает за 10 минут (10/60=1/6 часа) 4 круга, т.е. 500*4=2000 м =2 км.
v (скорость)= S (расстояние)/t (время)= 2/ (1/6)= 12 км/час – утверждение верно

2) S (расстояние, которое проехал Петя)=500*5=2500 м=2,5 км
t(время) = 15 минут=15/60=1/4 часа
v = 5*500/(1/4)=2,50/,25= 10 (км/час) - скорость с которой ехал Петя.
20% от 12 равно 2,4 (12*0,2)
12-2,4=9,6 км/час, а Петя ехал с большей скоростью - 10 км/час
скорость Васи на 20 % больше скорости Пети - утверждение не верно

3) Скорость сближения: 12+10=22 км/час
Расстояние: 500 м=0,5 км
Время встречи:
t=S/v=0,5/22=1,4 минуты
Если Петя и Вася одновременно стартуют из одной точки трека в разных направлениях, то до их встречи с момента старта пройдет больше 1,5 минут – утверждение не верно.

4) 50 минут = 50/60 = 5/6 часа
S=v*t=12*5/6=10 (км) – расстояние которое проедет Вася за 50 минут, т.е он проедет 10/0,5= 20 кругов
S=v*t=10*5/6=8 (км) - расстояние которое проедет Петя за 50 минут, т.е. он проедет 8/0,5 = 16 кругов.
20-16=4
Если Петя и Вася одновременно стартуют из одной точки трека в одном направлении, то за 50 минут будет четыре обгона – утверждение верно.
4,6(65 оценок)
Ответ:
dana0550
dana0550
12.05.2023
Далее в тексте будем подразумевать под биквадратным трёхчленом и его коэффициентами выражение t^2 - 8 t + [7-a] = 0 , где под t подразумевается квадрат переменной x^2 , т.е. t = x^2 , а его корнями t_{1,2} – квадраты искомых корней, если они различны, или его чётным корнем t_o = x^2_{1,2} , если корень биквадратного трёхчлена t_o – единственный.

Наше уравнение вообще имеет решения только тогда, когда дискриминант биквадратного трёхчлена неотрицателен, при этом, в силу чётности биквадратного уравнения, удобно находить чётный дискриминант через половину среднего коэффициента и без множителей в последнем слагаемом, т.е. по формуле D_1 = ( \frac{b}{2} )^2 - ac , тогда D_1 = 4^2 - [7-a] = 9 + a . Потребуем, чтобы D_1 \geq 0 , откуда следует, что 9 + a \geq 0 ; \ \ \Rightarrow a \geq -9 .

Уравнение не может стать просто квадратным, оно всегда будет иметь старшей степенью 4, поскольку старший коэффициент фиксирован и равен единице. Но биквадратное уравнение может выродится, когда его дискриминант равен нолю, что происходит при a = -9 , а корень биквадратного трёхчлена станет чётным t_o = 4 , давая два искомых корня x_{1,2} = \pm 2 . Это значение a = -9 как раз уже и есть одно из искомых решений для параметра a .

Когда дискриминант больше нуля и биквадратное уравнение не вырождено, то квадратов искомых корней x^2 , всегда будет два – левый и правый (меньший и больший), однако при некоторых обстоятельствах левый квадрат искомых корней будет отрицательным, а значит, не будет давать пару искомых корней. Среднеарифметическое квадратов искомых корней x^2 , по теореме Виета, в применении к биквадратному уравнению, будет равно числу, противоположному половине среднего коэффициента, т.е. оно равно -\frac{b}{2} = -\frac{-8}{2} = 4 . Отсюда следует, что правый квадрат искомых корней x^2 , – всегда положителен, а значит, всегда даёт два корня при положительном дискриминанте.

Левый же квадрат искомых корней отрицателен тогда и только тогда, когда этот левый квадрат лежит левее оси ординат, т.е. левее точки x = 0 . А значит, значение всего трёхчлена x^4 - 8 x^2 + [7-a] взятое от x = 0 должно давать отрицательное значение, т.е. располагается в нижней межкорневой дуге параболы биквадратного трёхчлена.

Отсюда: 0^4 - 8 \cdot 0^2 + [7-a] < 0 ;

7 - a < 0 ;

a 7 ;

О т в е т : a \in \{ -9 \} \cup ( 7 ; +\infty ) .
4,6(20 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ