y=-2(x-1)^2
y=-2(x^2-2x+1)
y=-2x^2+4x-2
f(x)=-2x^2+4x-2
График - парабола, ветви вниз, т.к. коэффициент при x^2 отрицательный,
a=-2.
Точка вершины параболы (1;0): x=-b/2a=-4/2*-2=-4/-4=1;
y=-2*1+4*1-2=-4+4=0
Пересечение с осью У, при х=0: -2*0+4*0-2=-2 - точка пересечения (0;-2).
Точки пересечения с осью Х, при y=0:
-2x^2+4x-2=0 |2
-x^2+2x-1=0
D=2^2-4*(-1)*(-1)=0 Уравнение имеет один корень
х=(-2+0)/-2=1
График пересекается с осью Х в точке (1;0), т.е. вершина параболы лежит на оси 0Х.
График во вложении
Составляем системы уравнений во всех случаях:
a)
m + n = 4
mn = 4
(Шаг 1) Выражаем в первом уравнении m через n и подставляем во второе:
m = 4 - n
(4 - n)n = 4
(Шаг 2) Теперь работаем со вторым уравнением:
-n² + 4n - 4 = 0 | * -1
n² - 4n + 4 = 0
D = 16 - 16 = 0
n = 4/2 = 2
(Шаг 3) Подставляем получившийся корень (если D > 0, то корней будет 2, подставляем оба и получаем две пары решений) в первое уравнение системы:
m = 4 - 2
m = 2
ответ: m = 2; n = 2.
b)
m + n = -5
mn = 6
Шаг 1:
m = -5 - n
(-5 - n)n = 6
Шаг 2:
-5n - n² - 6 = 0 | * -1
n² + 5n + 6 = 0
D = 25 - 24 = 1
n1 = (-5 + 1)/2 = -2
n2 = (-5 - 1)/2 = -3
Шаг 3:
m1 = -5 - (-2)
m1 = -5 + 2
m1 = -3
m2 = -5 - (-3)
m2 = -5 + 3
m2 = 2
ответ: m1 = -3; n1 = -2; m2 = -2; n2 = -3
Таким же образом решаются следующие два уравнения.
Объяснение:
Допустим первая цифра будет 4. Между четвёрками будет стоять четыре цифры. Тогда первая и шестые цифры будут четвёрками: 44**. Пусть вторая цифра будет 1. Между единицами должна стоять только одна цифра. Тогда вторая и четвёртые цифры будут единицами: 41*1*4**. Третья цифра не может быть двойкой, т.к. между двойками должно находится две цифры. Если бы третья цифра была двойкой, тогда двойками были третья и шестая цифры, шестая цифра уже занята, поэтому третья и седьмая цифры это тройки: 4131*43*. В оставшиеся звёздочки впишем двойки: 41312432. Мы получили число, в котором между четвёрками стоят четыре цифры, между тройками - три цифры, между двойками - две цифры, между единицами - одна цифра.