Пусть радиус вписанного цилиндра равен х, а его высота равна 2у. Тогда его боковая поверхность равна 2*пи*х*у. Кроме того, по теореме Пифагора х^2 + у^2 = r^2. Согласно известному соотношению между средним квадратичным и средним геометрическим двух чисел значение х*у будет максимально, если х = у. Тогда х = у = rV2/2, и 2*пи*х*у = 2*пи * rV2/2 * rV2/2 = пи*r^2.
Пусть за t₁=х часов проезжает расстояние между городами 1-ый поезд. Тогда за t₂=(20-х) часов проезжает 2-ой поезд.
Пусть s - расстояние между городами. тогда v₁=s/t₁=s/x - скорость первого поезда а v₂=s/t₂=s/(20-x) - скорость второго. Скорость их сближения v₃=v₁+v₂ = s/x + s/(20-x) Тогда время, через которое они встреться t(v)=s/v₃ и по условию это равно 4часа 48 минут.
Переведём это время в часы. 4ч48м = 4 48/60ч = 4 12/15ч = 72/15ч