М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kolyakek
Kolyakek
18.08.2020 01:31 •  Алгебра

Различные числа a и b делятся на c. Укажите термин false: a - b + 1 A) число делится на c; atb 2a - b B) сокращенная дробь; a + b C) число ab делится на c; D) Число Za + 2b делится на число c; E) ab - 2c делится на c.​


Различные числа a и b делятся на c. Укажите термин false: a - b + 1 A) число делится на c; atb 2a -

👇
Ответ:
zelenukanna2002
zelenukanna2002
18.08.2020

а) ақиқат

в) жалған

с) ақиқат

д) жалған

е) ақиқат

4,5(37 оценок)
Открыть все ответы
Ответ:
Лиза200111111
Лиза200111111
18.08.2020

y = -6·x

Объяснение:

Пусть линейные функции, то есть прямые заданы уравнениями y₁=k₁·x+b₁ и y₂=k₂·x+b₂. Прямые параллельны тогда и только тогда, когда k₁=k₂ и b₁≠b₂. Если k₁=k₂ и b₁=b₂, то прямые совпадают.

В силу этого, уравнение прямой, параллельной графику функции y=-6·x+10 имеет вид: y=-6·x+b. Так как прямая проходит через начало координат О(0; 0), то подставляя эти значения определяем b:

0=-6·0+b или b=0.

Тогда уравнение прямой, параллельной графику функции y=-6x+10 и проходящей через начало координат имеет вид: y=-6·x.

4,6(21 оценок)
Ответ:
kapitoshka202
kapitoshka202
18.08.2020
p(x)=a_{1}x^4+a_{2}x^3+a_{3}x^2+a_{4}x+a_{5}\\
 x=\sqrt{x_{1}}\\
 x=\sqrt{x_{1}}+b\\
 x=\sqrt{x_{1}}+2b\\
 x=\sqrt{x_{1}}+3b\\\\
 p(x)+a=a_{1}x^4+a_{2}x^3+a_{3}x^2 + a_{4}x+a_{5}+a\\
y=\sqrt{y_{1}}\\
y=\sqrt{y_{2}}\\
y=\sqrt{y_{3}}\\
y=\sqrt{y_{4}}\\\\ 




По теореме Виета для уравнение четвертой степени получаем соотношение   
4\sqrt{x_{1}}+6b = -\frac{a_{2}}{a_{1}}\\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)+\sqrt{x_{1}}(\sqrt{x_{1}}+2b)+\sqrt{x_{1}}(\sqrt{x_{1}}+3b)+(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)+...=\frac{a_{3}}{a_{1}}\\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)+\sqrt{x_{1}}(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b).........=-\frac{a_{4}}{a_{1}} \\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b)=\frac{a_{5}}{a_{1}}\\\\ \sqrt{y_{1}}+\sqrt{y_{2}}+\sqrt{y_{3}}+\sqrt{y_{4}}=-\frac{a_{2}}{a_{1}}\\
\sqrt{y_{1}y_{2}}+\sqrt{y_{1}y_{3}}+\sqrt{y_{1}y_{4}}+\sqrt{y_{2}y_{3}}...+ = \frac{a_{3}}{a_{1}} \\ \sqrt{y_{1}y_{2}y_{3}}+\sqrt{y_{1}y_{2}y_{4}} [/tex]        

\left \{ {{4\sqrt{x_{1}}+6b=\sqrt{y_{1}}+\sqrt{y_{2}}+\sqrt{y_{3}}+\sqrt{y_{4}}
 } \atop {\sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b)-\sqrt{y_{1}y_{2}y_{3}y_{4}}=a} \right. \\

Учитывая условия что коэффициенты все выражаются в радикалах , то  сумма всех корней выраженные в радикалах есть число радикальное . 
  По третьем  равенству первой системы  \sqrt{x_{1}x_{2}x_{3}}=Rad  , то произведение корней так же число радикальное , откуда с последних двух идет верное равенство
4,5(22 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ