Может показаться, что это задача на линейное программирование, но это не так. Переменных больше, чем уравнений, и мы не можем из условий задачи найти производительности тракторов или полное время работы.
Однако, в момент времени t все тракторы сделали одинаковую работу, следовательно, и после t им осталось сделать одинаковую работу.
До момента t трактор C затратил на 20 минут времени меньше, чем B, а после момента t он затратил на 12 минут меньше. Значит, объемы сделанной работы до момента t и после соотносятся как 20/12 = 5/3
Тогда, зная, что до момента t первый трактор работал дольше на 30 минут, чем второй, можно вычислить, что после момента t первый трактор работал на 30 * 3/5 = 18 минут больше, чем второй.
При |x|≥2 x^2-4≥0. Тогда при y≥-x^2 y+x^2=x^2-4, откуда y=-4. -4≥-x^2 ⇒ x^2≥4. Справедливо для всех x, для которых |x|≥2 При y<-x^2 -y-x^2=x^2-4 y=4-2x^2. Должно выполняться 4-2x^2<-x^2, откуда x^2>4 опять же, справедливо для всех x, для которых |x|>2. При |x|<2 x^2-4<0 Тогда при y≥-x^2 y+x^2=-x^2+4, откуда y=4-2x^2. Должно выполняться 4-2x^2≥-x^2 x^2≤4. Неравенство верно при всех x, таких что |x|<2 При y<-x^2 -y-x^2=-x^2+4, откуда y=-4 -4<-x^2 ⇒x^2<4 - Неравенство верно при всех x, таких что |x|<2 Соответственно, получается, что для всех x справедливы следующие равенства: y=-4 y=4-x^2. Графиком данного уравнения являются 2 линии: 1) прямая, параллельная оси Ox, проходящая через точку (0;-4) 2) парабола с ветвями, направленными вниз, и вершиной в точке (0;4).
Однако, в момент времени t все тракторы сделали одинаковую работу, следовательно, и после t им осталось сделать одинаковую работу.
До момента t трактор C затратил на 20 минут времени меньше, чем B, а после момента t он затратил на 12 минут меньше.
Значит, объемы сделанной работы до момента t и после соотносятся как 20/12 = 5/3
Тогда, зная, что до момента t первый трактор работал дольше на 30 минут, чем второй, можно вычислить, что после момента t первый трактор работал на 30 * 3/5 = 18 минут больше, чем второй.