график функции заданной уравнением y=(a-3)x+a+2 пересекает ось абсцисс в точке с координатами (-6;4).a)найдите значение а: b) запишите функцию в виде y= kx+b c)не выполняя построения графика функции определите через какую четверть|график не проходит
Решение Чтобы избавиться от знака корня, возведем обе части во вторую степень и получим слева просто x+3, а справа сокращенное умножение квадрата суммы: Приведем подобные члены и вычислим квадратное уравнение, приравняв результат к нулю: График функции - парабола. Ветви вниз, так как коэффициент при . Найдем корни квадратного уравнения: Корни квадратного уравнения - точки пересечения с осью X. Так как условие неравенства - больше или равно, то интервал включает в себя значения корней уравнения. ответ: а) [-3;-2]
Пересечение с осью абсцисс определяется равенством y(x) = 0.
8x³-1=0 8x³=1 x³=1/8 x=1/2
Уравнение касательной - y=kx+b. Коэффициент k соответствует значению первой производной в точке касания. Параметр b определяется фактом того, что в точке касания значение касательной равно значению функции в этой точке, т.е. 0.
y'(x)=8*3x²=24x² y'(1/2)=24(1/2)²=24/4=6
Значит, уравнение касательной равно 6x+b. В точке x=1/2 ее значение равно 6*(1/2)+b = 3+b При этом оно должно быть равно 0: 3+b=0 b=-3
Т.о., уравнением касательной в точке пересечения функции с осью абсцисс, является y=6x-3
Объяснение:
y=(a-3)x+ a+2
Вместо x -6, а вместо y 4
4=(a-3)×(-6)+a+2
Теперь раскрывает скобки
4=-6a+18+a+2
Все с a в одну сторону
4-18-2 = -5а
5а=20
a=4