Число при делении на 5 дает в остатке 3 только если оно заканчивается на 3 или на 8. Докажем что ни одно целое число в квадрате не заканчивается ни на 3, ни на 8.
если число закачивается на 0, то в квадрате оно заканчивается на 0 если число закачивается на 1, то в квадрате оно заканчивается на 1 если число закачивается на 2, то в квадрате оно заканчивается на 4 если число закачивается на 3, то в квадрате оно заканчивается на 9 если число закачивается на 4, то в квадрате оно заканчивается на 6 если число закачивается на 5, то в квадрате оно заканчивается на 5 если число закачивается на 6, то в квадрате оно заканчивается на 6 если число закачивается на 7, то в квадрате оно заканчивается на 9 если число закачивается на 8, то в квадрате оно заканчивается на 4 если число закачивается на 9, то в квадрате оно заканчивается на 1
Для того чтобы исключить иррациональность из знаменателя дополнительный множитель берём равный иррациональному числу.
Для того чтобы исключить иррациональность из знаменателя нужно использовать формулу сокращенного умнажения, а именно
a²-b²=(a-b)(a+b) дополнительный множитель должен быть либо a-b или a+b.
(остальное в фото)
Дополнительный множитель это число, которое нужно умножить на числитель и знаменатель. Причём значение дроби не меняется.