РЕШЕНИЕ Экстремумы находим по корням первой производной. 1. Y(x) = -2*x³ + 36*x² - 66*x+1 - функция Y'(x) = - 6*x² + 72*x - 66 - первая производная. Находим корни - решаем - D = 3600, x1 = 1, x2 = 11. Делаем вывод - в области определения только один корень. Вычисляем при Х = 1. Ymin(1) = -2+36-66+1 = - 31 - минимум - ОТВЕТ Функция с отрицательным коэффициентом при Х³ - убывает. Значит максимум на границе - при Х = - 2 Вычисляем при Х = - 2 Ymax(-2) = 16+144+132+1 = 293 - максимум - ОТВЕТ Рисунок к задаче в приложении. 2. D(x) = [0;π/2] - область определения Y(x) = sin(X) + 1/2*cos(X) - функция. График функции - в приложении. Y'(x) = cos(X) - sin(2*x) - производная. Решаем уравнение cos(x) - 2*sin(x)*cos(x) = 0 cos(x)*(1 - 2*sin(x)) = 0 x1 = π/6, x2 = 0. Минимум при Х=0, Ymin(0) = 0.5 - ОТВЕТ Максимум при Х = π/6 = 30°, Ymax(π/6) = 0.75 - ОТВЕТ
Пусть 2-я труба наполняет бассейн за х часов, тогда 1-я труба наполняет бассейно за (х -18) часов. производительность (работа за 1 час) 1-й трубы: 1/(х -18), 2-й трубы: 1/х. их общая производительность: 1/(х -18) + 1/х. работая вместе, они сделали всю работу (равную 1) за 12 часов (1/(х -18) + 1/х)·12 = 112·(х + х - 18) = х² - 18х х² - 42х + 216 = 0 d = 42² - 4·216 = 900 √d = 30 х₁ = (42 - 30) : 2 = 6 (не подходит по условию , даже работая вместе трубы наполняют бассейн за 12 часов! ) х₂ = (42 + 30) : 2 = 36 ответ: 2-я труба наполняет бассейн за 36 часов
Пусть скорость второго лыжника будет х км/ч, тогда скорость первого лыжника, будет х-2 км/ч (т.к. его скорость была на 2 км/ч меньше, чем у второго). Время, за которое первый лыжник преодолел расстояние в 40 км будет: 40/(х-2)=t Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет: 48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение: t=40/(х-2)=48/х
Решаем это уравнение относительно х: 40 = 48 х-2 х
40*х=48*(х-2) 40х=48х-48*2 40х=48х-96 48х-40х=96 8х=96 х=96:8 х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.: 12-2=10 км/ч - скорость первого лыжника.
Экстремумы находим по корням первой производной.
1.
Y(x) = -2*x³ + 36*x² - 66*x+1 - функция
Y'(x) = - 6*x² + 72*x - 66 - первая производная.
Находим корни - решаем - D = 3600, x1 = 1, x2 = 11.
Делаем вывод - в области определения только один корень.
Вычисляем при Х = 1.
Ymin(1) = -2+36-66+1 = - 31 - минимум - ОТВЕТ
Функция с отрицательным коэффициентом при Х³ - убывает.
Значит максимум на границе - при Х = - 2
Вычисляем при Х = - 2
Ymax(-2) = 16+144+132+1 = 293 - максимум - ОТВЕТ
Рисунок к задаче в приложении.
2.
D(x) = [0;π/2] - область определения
Y(x) = sin(X) + 1/2*cos(X) - функция.
График функции - в приложении.
Y'(x) = cos(X) - sin(2*x) - производная.
Решаем уравнение
cos(x) - 2*sin(x)*cos(x) = 0
cos(x)*(1 - 2*sin(x)) = 0
x1 = π/6, x2 = 0.
Минимум при Х=0, Ymin(0) = 0.5 - ОТВЕТ
Максимум при Х = π/6 = 30°, Ymax(π/6) = 0.75 - ОТВЕТ