Многочлен стандартного вида - это многочлен, в котором все слагаемые имеют стандартный вид и в котором приведены подобные слагаемые (имеют одинаковую буквенную часть).
Степень многочлена - это степень наибольшего одночлена, в ходящего в многочлен.
1) 22а² - 40а³ + 18а² + 29а³ + а⁴ = а⁴ - 11а³ + 40а²; степень - 4;
2) -7b⁵ - 13b⁶ + 15 - 9b⁵ + 34b⁶ = 21b⁶ - 16b⁵ + 15; степень - 6;
3) 41c² + 62c³ - 99 - 42c² + 38c³ = 100c³ - c² - 99; степень - 3;
4) -52k + k⁴ - 18k⁴ + 52 - k = -17k⁴ - 53k + 52; степень - 4.
Обозначим за x и y время прихода, 0≤x,y≤60 (минут), так как время ожидания с 13.00 до 14.00 равно 60 мин. В прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата OABC. Друзья встретятся, если между моментами их прихода пройдет не более 6 минут, то есть
y-x<6 , y<x+6 (y>x) и
x-y<6 , y>x-6 (y<x).
Этим неравенствам удовлетворяют точки, лежащие в области Х.
Для построения области Х надо построить прямые у=х+6 и у=х-6.Затем рассмотреть точки, лежащие ниже прямой у=х+6 и выше прямой у=х-6.
Кроме этого точки должны находиться в квадрате ОАВС.
Площадь области Х можно найти, вычтя из площади квадрата ОАВС площадь двух прямоугольных треугольников со сторонами (60-6)=54:
S(X)=S(OABC)-2*S(Δ)=60²-2*1/2*54*54=3600-2916=684.