y=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).
Подробнее - на -
Объяснение:
Если я правильно понял задание, то даны косинус и синус двойного угла. Если да. То начнем по порядку:
![tga=2;\\ \frac{sina}{cosa}=2;\\ Sina=2*Cosa;\\](/tpl/images/0161/9183/ef77c.png)
1- Нам дан тангенс - это отношение синуса к косинусу. Запишем:
Теперь распишем само выражение, применяя формулы синуса и косинуса двойного угла:
![Sin2a=2sina*cosa;\\ cos2a=cos^2(a)-sin^2(a);\\ Cos2a-sin2a=cos^2(a)-sin^2(a)-2sina*cosa;\\](/tpl/images/0161/9183/54156.png)
Воспользуемся нашим отношением (Sina=2cosa).
Подставим значение косинуса в наше выражение:
![Cos2a-sin2a=cos^2(a)-sin^2(a)-2sina*cosa=\\ Cos^2(a)-(2cosa)^2-2*2*cosa*cosa=cos^2(a)-4cos^2(a)-\\-4cos^2(a)=cos^2(a)-8cos^2(a)=-7cos^2(a);\\](/tpl/images/0161/9183/b2080.png)
2-Также мы знаем формулу:
Откуда получим cos^2(a):
Подставим в наше выражение:
Вот и получили ответ.
Если же в дано идет Cos^2(a)-sin^2(a) - то получим:
Воспользуемся полученным ранее, что Cos^2(a)=1/5;
Так же получили ответ.