Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5
2. Х - это время за которое всю работу сам выполнит 1 слесарь
3. Y - это время за которое всю работу сам выполнит 2 слесарь
Так как второй на 1 час=60 минут дольше, то первое уравнение системы
y - x = 60
Составляем второе уравнение:
1. Так как вся работа - это 1, то 1 слесарь за 1 минуту выполняет 1/x часть работы а второй за 1 минуту - 1/y часть работы
2. Работают вместе
1 слесарь 45 минут - значит всего выполнил работы - 1/x × 45
2 слесарь 45 минут и еще 2 часа 15 минут Итого работает 3 часа= 180 минут
Значит выполнил 1/y × 180 часть работы
вся работа - 1
уравнение получается:
1/x×45 + 1/y × 180 = 1
Решаем систему
Вышлю фото при необходимо сти.
При решении системы получается квадратное уравнение
x^2 - 165x - 2700=0
x = 180
Тогда y = 180+60= 240
ответ: 1 слесарь = за 3 часа, 2 слесарь - за 4 часа