y=x^2-|4x+3| при х > -3/4 преобразуется к виду y=x^2-4x-3 = (х-2)^2-7 на участке от -3/4 до 2 график убывает от 0,5625 до -7 на участке от 2 до +беск график возрастает от -7 до + беск y=x^2-|4x+3| при х < -3/4 преобразуется к виду y=x^2+4x+3 = (х+2)^2-1 на участке от -беск до -2 график убывает от + беск до -1 на участке от -2 до -3/4 график возрастает от -1 до 0,5625 график несимметричный имеет 2 минимума и один максимум кривая у = м пересекает график y=x^2-|4x+3| ровно 3 раза только при м=-1 и при м=0,5625
25 (км/ч)
Объяснение:
Расстояние против течения - Sпр.теч. = 100 км
Время против течения - tпр.теч. = 4часа
Расстояние по течению - Sпо теч. = 150 км
Время по течению - tпо теч. = 5 часов
На сколько км/ч скорость течения реки меньше собственной скорости лодки?
Пусть Vc. - собственная скорость лодки, а Vт. - скорость течения реки.
⇒ Vпо теч.=Vс. + Vт., Vпр.теч. = Vс. - Vт.
Чтобы найти скорость, нужно расстояние разделить на время:
Найдем скорости по течению и против течения:
Vпр.теч. = 100:4 = 25 (км/ч)
Vпо теч. = 150:5 = 30 (км/ч)
Получим систему:
Сложим уравнения и найдем Vc.:
Собственная скорость лодки Vс.=27,5 км/ч
Найдем скорость течения реки:
(км/ч)
Найдем, на сколько км/ч скорость течения реки меньше собственной скорости лодки:
27,5 - 2,5 = 25 (км/ч)