Объяснение:
составим систему уравнений
b(5)-b(3)=1200 (1)
b(5)-b(4)=1000 (2) ⇒ b(5)= 1000+b(4) (2_2)
Добавим в систему третье уравнение b(4)²=b(5)*b(3) (3)
вычтем из уравнения (1)-(2) ⇒ b(4)-b(3)=200 ⇒ b(3)=b(4)-200 (4)
Подставим (2_2) в (3)
b(4)²=(1000+b(4))*b(3) Подставим вместо b(3) уравнение (4)
b(4)²=(1000+b(4))*(b(4)-200)
b(4)²==1000b(4)+b(4)²-200000-200b(4) [b(4)² сократим]
800 b(4)=200000 b(4)=250
b(3)=250-200=50 b(3)=50
q=b(4)/b(3)=250/50=5 q=5
b(3)=b(1)*q² ⇒ b(1)=50/25=2 b(1)=2
S(5)= b(1)(q^n-1)/(q-1)
S(5)=3125
Известно, что 30% числа a на 20 больше, чем 20% числа p,
а 30% числа p на 8 больше, чем 20% числа a.
Найди числа a и p.
решение : Можно составить систему уравнений :
{ a*30/100 - p*20/100 =20 ; { 3a /10 - 2p /10 =20 ; | * 10
{ p*30/100 - a*20/100 = 8 . { -2a/10 +3p/10 =8 . | *10
{ 3a - 2p =200 ; | * 3 { 9a - 6p =600 ;
{ -2a +3p = 80. | * 2 { - 4a +6p =160 .
складывая почленно уравнения системы получаем 5a =760
⇒a =760/5 =760*2/ 10 = 152
Для нахождения соответствующего значения p подставим значение a
в уравнение первое или второе уравнение системы .
-2a +3p = 80 || a =152 || -2*152 + 3p = 80 ⇒ p =(80+2*152)/3 =384/3 =126
a = 152
b = 126
* * * P.S. решения систем двух линейных уравнений с двумя переменными * * *
оооооооооооооооооооооооо