Постройте график функции у=х²+4х-2
Уравнение графика параболы со смещённым центром, ветви параболы направлены вверх.
Найдём координаты вершины параболы (для построения):
х₀= -b/2a= -4/2= -2
y₀= (-2)²+ 4*(-2) -2 =4 -8 -2= -6
Координаты вершины параболы (-2; -6)
Нужны дополнительные точки для построения графика. Придаём значения х, получаем значения у, составляем таблицу:
х -5 -4 -3 -2 -1 0 1
у 3 -2 -5 -6 -5 -2 3
По найденным точкам можно построить график параболы.
а)Подставляем в уравнение значение х=1,5 получаем у:
у=х²+4х-2
у= (1,5)² + 4*1,5 -2= 2,25+6-2= 6,25
б)Наоборот, заменяем у на 4:
у=х²+4х-2
х²+4х-2=4
х²+4х-6=0, квадратное уравнение, ищем корни:
х₁,₂=(-4±√16+24)2
х₁,₂=(-4±√40)2
х₁,₂=(-4±6,3)2
х₁=5,15
х₂=1,15
в)у=х²+4х-2
y <0
х²+4х-2<0
Решаем, как квадратное уравнение:
х²+4х-2=0
х₁,₂=(-4±√16+8)2
х₁,₂=(-4±√24)2
х₁,₂=(-4±4,9)2
х₁= -4,45
х₂= 0,45
у(х) <0 при -4,45 < х < 0,45
г)Функция возрастает на промежутке ( -2; ∞)
будем считать, что функция называется f(x)f(x).из условия про нее известно, что f(−4)=2f(−4)=2 (точка a), f(−2)=−4f(−2)=−4 (точка b), f(4)=6f(4)=6 (точка с), а между этими точками (узлами) функция линейна, поэтому для построения графика функции f(x)f(x) нужно узлы соединить отрезками.
функции f(2x)f(2x), f(x/2)f(x/2), f(−0,5x)f(−0,5x), f(−3x)f(−3x), тоже линейны между узлами, поэтому для построения их графиков нужно найти значения в узлах, а потом соединить полученные точки отрезками.
например, f(2x)f(2x), при x=−2x=−2 равно f(−4)=2f(−4)=2, поэтому точка a1(−2,2)a1(−2,2) является узлом функцииf(2x)f(2x). аналогично, f(2x)f(2x), при x=−1x=−1 равно f(−2)=−4f(−2)=−4, поэтому точка b1(−1,−4)b1(−1,−4) - тоже узелf(2x)f(2x), как и точка с1(2,6)с1(2,6). для построения графика функции f(2x)f(2x) нужно пары точек a1,,b1a1,,b1 и b1,,c1b1,,c1 соединить отрезками. для функции f(x/2)f(x/2) аналогично получаем узлы a2(−8,2)a2(−8,2), b2(−4,−4)b2(−4,−4), c2(8,6)c2(8,6) и т.д.