Четырёхзначное число кратно 15, следовательно делится 5. Тогда последняя цифра искомого числа либо 0, либо 5. Нуль не подходит, т.к. произведение его цифр не равно нулю. Остётся - последняя цифра числа равна 5. Тогда произведение оставшихся цифр больше 11, но меньше 13, что означает - это произведение равно 12. Ни 9, ни 8, ни 7, ни 5 не м.б. среди этих чисел, т.к. не получится произведение равное 12. Это м.б. цифра 6? Но тогда есть единственный набор цифр, произведение которых равно 12 = 1 * 2 * 6. Но, искомое число должно делиться нацело ещё и на 3, т.к. всё число делится на 15. Считаем сумму цифр числа, чтобы определить, делится число на 3 или нет. 1 + 2 + 6 +5 =14. Не делится на 3. Цифра 6 отпадает. М.б. это цифра 4? Опять единственный набор 12 = 1 * 3 * 4. И опять сумма цифр не делится на 3: 1+ 3 + 4 +5 = 12. Цифра 4 отпадает. Может быть это цифра 3? Опять единственный набор 12 = 2 * 2 * 3. А вот сумма цифр делится на 3: 2 + 2 + 3 + 5 = 12. Цифра 3 подходит, как и весь набор 2, 2, 3, 5. Остаётся выяснить в каком порядке они в искомом числе: 2235 : 15 = 149 2325 : 15 = 155 3225 : 15 = 215 Условиям задачи удовлетворяют 3 числа!
1) Треугольник, образованный пересечением диагоналей и малой стороной основания трапеции 8 см: - этот треугольник равнобедренный; - а - катеты этого Δ, они равны между собой по св-ву равнобедренного Δ; - гипотенуза равна 8 см; - по т. Пифагора: a²+a²=8² 2a²=64 a²=32 a=√32 a=4√2
Треугольник, образованный пересечением диагоналями трапеции и большей стороной трапеции 12 см: - этот треугольник - равнобедренный; - b - катеты этого Δ, они равны по св-ву равнобедренного Δ; - 12 см - гипотенуза; - по т. Пифагора: b²+b²=12² 2b²=144 b²=72 b=√72 b=6√2
Объяснение:
Решение на фотографии ....