ответ:Привет!
Первоначально надо найти корни квадратного уравнения в числителе дроби
Корни квадратного уравнения можно решить последовательно рассчитывая дискриминант, значение которого должно быть больше или равно нулю (при нуле x1=x2), после - значения корней.
а*X^2+b*X+c=0
D=b*b-4*a*c ; x1=[-b-(D^(1/2))]/(2*a) и x2=[-b+(D^(1/2))]/(2*a)
Если D=0, то x1,2=-b/(2*a)
Теперь конкретно:
1) Числитель дроби
3x2 -7x +2=0
D=(-7)*(-7)-4*2*3=49-24=25
x1=[7-5]/(2*3)=2/6=1/3 и x2=[7+5]/(2*3)=12/6=2
3x2 -7x +2=(3x-1)*(x-2)
2) Знаменатель дроби
2-6х=2*(1-3х) Вынесем -1 за скобку, получим -2*(3x-1)
Имеем дробь [(3x-1)*(x-2)]/[-2*(3x-1)]
Здесь можно сократить на (3x-1)
После сокращения получаем [(x-2)]/[-2] или -0,5*(x-2)
ОТВЕТ: -0,5*(x-2)
Успехов!
Объяснение:Привет!
Первоначально надо найти корни квадратного уравнения в числителе дроби
Корни квадратного уравнения можно решить последовательно рассчитывая дискриминант, значение которого должно быть больше или равно нулю (при нуле x1=x2), после - значения корней.
а*X^2+b*X+c=0
D=b*b-4*a*c ; x1=[-b-(D^(1/2))]/(2*a) и x2=[-b+(D^(1/2))]/(2*a)
Если D=0, то x1,2=-b/(2*a)
Теперь конкретно:
1) Числитель дроби
3x2 -7x +2=0
D=(-7)*(-7)-4*2*3=49-24=25
x1=[7-5]/(2*3)=2/6=1/3 и x2=[7+5]/(2*3)=12/6=2
3x2 -7x +2=(3x-1)*(x-2)
2) Знаменатель дроби
2-6х=2*(1-3х) Вынесем -1 за скобку, получим -2*(3x-1)
Имеем дробь [(3x-1)*(x-2)]/[-2*(3x-1)]
Здесь можно сократить на (3x-1)
После сокращения получаем [(x-2)]/[-2] или -0,5*(x-2)
ОТВЕТ: -0,5*(x-2)
Успехов!
Решение на фото.
Объяснение:
Комментарий ко 2-му примеру: корни уравнения - точки пересечения графика параболы с осью OX. Если таких точек нет - график не пересекает эту ось, а значит всегда находится сверху (учитывая, что ветви параболы направлены вверх в данном случае).
Комментарий к 3-му примеру: Разделим выражение на -1, получим:
x²-10x+25 = 0. Слева - формула сокращённого умножения, а именно - квадрат разности. Он сворачивается до выражения " (x-5)² = 0 ". Если выражение в квадрате равно нулю, то и простое выражение тоже равно нулю, значит:
x - 5 = 0, откуда x = 5.