(m) отрицательным быть не может ---> для m < 0 решений НЕТ для m >= 0 возможны два варианта: x^2 + 3x + (4-m) = 0 или x^2 + 3x + (4+m) = 0 D= 9-4(4-m) = 4m - 7 D= 9-4(4+m) = -4m - 7 условие существования корней D ≥ 0 4m - 7 ≥ 0 -4m - 7 ≥ 0 для m < 7/4 корней нет для m > -7/4 корней нет для m ≥ 7/4 x₁;₂ = (-3 +-√(4m-7)) / 2 для m < 7/4 корней НЕТ
√3 sinx+cosx=2 Воспользуемся формулами двойного угла и перейдем к аргументу х/2: √3*2sin(x/2)cos(x/2)+cos²(x/2)-sin²(x/2)=2cos²(x/2)+2sin²(x/2) √3*2sin(x/2)cos(x/2)-cos²(x/2)-3sin²(x/2)=0 Разделим на cos²(x/2) √3*2sin(x/2)/cos(x/2)-1-3sin²(x/2)/cos²(x/2)=0 √3*2tg(x/2)-1-3tg²(x/2)=0 Обозначим у=tg²(x/2) тогда √3*2y-1-3y²=0 3y²-2√3*y+1=0 D=4*3-4*3*1=12-12=0 Один корень у=(2√3)/(2*3)=1/√3 Возвращаемся к переменной х tg²(x/2)=1/√3 k - любое число б) k=0 Это около 105°. Принадлежит данному интервалу При k=1 и больше выходим из рассматриваемого интервала. Только один ответ тогда
Теорема Виета x1x2(x2+x1)=-3*(-5)=15