М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aysi2005
aysi2005
14.04.2020 03:51 •  Алгебра

Пацаны, кому акк WoT пишите https://t.me/CVV334 бесплатно! БЕСПЛАТНО

👇
Ответ:
Sanya3110
Sanya3110
14.04.2020

Мн

4,7(34 оценок)
Открыть все ответы
Ответ:
Rentels
Rentels
14.04.2020

1. Найти наибольшее и наименьшее значение функции

F(x)=\dfrac{x^2-7x}{x-9}   на промежутке [-4; 1]

Точка разрыва  x=9   в заданный интервал не входит.

F(x)=\dfrac{x^2-7x}{x-9}=x+2+\dfrac{18}{x-9}

Первая производная для нахождения точек экстремумов.

F'(x)=\Big(x+2+\dfrac{18}{x-9}\Big)'=1-\dfrac{18}{(x-9)^2}\\\\F'(x)=1-\dfrac{18}{(x-9)^2}=0\\\\ \dfrac{x^2-18x+81-18}{(x-9)^2}=0~~~\Leftrightarrow~~~\dfrac{x^2-18x+63}{(x-9)^2}=0\\\\ x^2-18x+63=0\\\\ \dfrac{D}4=9^2-63=18=(3\sqrt2)^2\\\\x_1=9+3\sqrt2\approx 13;~~~x_2=9-3\sqrt2\approx 4,75

Обе точки экстремумов не попадают в интервал  x∈[-4; 1]

Значения функции на концах интервала

F(-4)=\dfrac{(-4)^2-7(-4)}{-4-9}=\dfrac{16+28}{-13}=-3\dfrac{5}{13}\\\\F(1)=\dfrac{1^2-7\cdot1}{1-9}=\dfrac{-6}{-8}=0,75

ответ: наименьшее значение функции \boldsymbol{F(-4)=-3\dfrac{5}{13}};

           наибольшее значение функции F(1) = 0,75

-----------------------------------------------------------------------------

2. Записать уравнение касательной к графику

функции   F(x)=x⁴-2x   в точке  x₀=-1

Уравнение касательной имеет вид  y = F(x₀) + F’(x₀)·(x - x₀)

F(-1) = x⁴-2x = (-1)⁴ - 2(-1) = 1+2 = 3

F'(-1) = (x⁴-2x)' = 4x³ - 2 = 4(-1)³ - 2 = -6

y = F(x₀) + F’(x₀)·(x - x₀) = 3 - 6 (x + 1) = 3 - 6x -6 = -6x - 3

ответ:  уравнение касательной   y = -6x - 3

---------------------------------------------------------------------------

3. Исследовать функцию и построить ее график  F(x)=x³-3x²

1) Область определения  D(F) = R

2) Область значений  E(F) = R

3) Нули функции

   F(x)=x³-3x² = 0;      x²(x - 3) = 0;     x₁ = 0;  x₂ = 3

4) Пересечение с осью OY

  x = 0;   F(0) = 0³-3·0² = 0

5) Экстремумы функции

  F'(x) = 0;   (x³-3x²)' = 0;   3x² - 6x = 0;  3x(x - 2) = 0;

  x₁ = 0;  F(0) = 0;   F"(0) = 6x - 6 = -6   ⇒  локальный максимум.

  x₂ = 2;  F(2) = 2³-3·2² = -4;  F"(2) = 6x - 6 = 6  ⇒  локальный минимум.

6) Монотонность функции.

   Интервалы знакопостоянства первой

              производной F'(x) = 3x(x - 2)

   ++++++++ (0) ------------- (2) +++++++++> x

         /                    \                    /

  x ∈ (-∞; 0)∪(2; +∞)  -  функция возрастает

  x ∈ (0;2)  -  функция убывает

7) Функция не периодическая, общего вида (не является чётной, не является нечётной).

8) Дополнительные точки для построения

x₃ = -1;  y₃ = -4;  x₄ = 1;  y₄ = -2

9) График функции в приложении


1. знайти найбільше і ! 1. знайти найбільше і найменше значення функції f(x)= x^2-7x/x-9 на проміжку
4,6(85 оценок)
Ответ:
tsaturyansyuza
tsaturyansyuza
14.04.2020

1.1.D(y)=[-5;4]

2.Е(у)=[-1;3]

3.Нули функции х=-3; х=3.5

4. Промежутки знакопостоянства. у>0 при х∈[-5;-3)∪(-3;3.5)

y<0 при х∈(3.5;  4]

5. Функция возрастает при х∈[-3;1] и убывает при х∈[-5;-3];[1;4]

6. Наибольшее значение у=3; наименьшее у=-1

7.Ни четная, ни нечетная.

8 Не периодическая.

2. f(10)=100-80=20

f(-2)=4+16=20

f(0)=0

5. 1.D(y)=(-∞;+∞)

2.Е(у)=(-∞;-1]

3.Нули функции нет

4. Промежутки знакопостоянства. у>0 ни при каких х, а при х∈(-∞;+∞)

y<0

5. Функция возрастает при х∈(-∞;-3] и убывает при х∈[-3;+∞)

6. Наибольшее значение у=-1; наименьшего нет

7.Ни четная, ни нечетная.

8 Не периодическая.

4,6(21 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ