1/x(x+4)+1/(x+4)(x+8)+1/(x+8)(x+12)+1/(x+12)(x+16)
ну можно все привести к общему знаменателю, и потом возиться с шестой степенью в числителе
а можно обратить внимание,что
1/n(n+4) = 1/4 * 4/n(n+4) = 1/4(n+4-n)/n(n+4) = 1/4*(1/n - 1/(n+4))
это выполняется для всех х, для которых разница в знаменателе = 4
1/(n+1)(n+5), 1/(n+8)(n+12), 1/(n+100)(n+104) итд
1/4* ( 1/x - 1/(x+4) + 1/(x+4) - 1/(x+8) + 1/(x+8) - 1/(x+12) + 1/(x+12) - 1/(x+16)) = 1/4*(1/x - 1/(x+16)) = 1/4*(x+16 - x)/x(x+16) = 1/4* 16/x(x+16) = 4/x(x+16)
Поскольку по условию задания скорость одного на 3 км/ч больше скорости другого, значит скорость другого велосипедиста = х-3 км/ч
Время в пути велосипедистов = расстояние между селами / скорость велосипедистов, значит
36/х - время в пути первого велосипедиста
36/ (х-3) - время в пути второго велосипедиста
По условию задания расстояние между селами один велосипедист преодолевает на 1 час быстрее другого.Поэтому выходит, что первый велосипедист тратит на 1 час меньше нежели второй на преодоление расстояния между селами
А значит
36/х +1 = 36/ (х-3)
36/х - 36/ (х-3)=-1
(36*(х-3))/(х*(х-3)) - (36*х)/(х*(х-3))=-1
(36х-108)/(х*(х-3)) - (36х)/(х*(х-3))=-1
(36х-108 - 36х)/(х*(х-3))=-1
-108=-(х*(х-3))
108=х²-3х
х²-3х-108=0
Теперь решим квадратное уравнение
Выпишем коэффициенты квадратного уравнения:
a = 1,
b = − 3,
c = − 108.
Найдем дискриминант по формуле D = b² − 4ac:
D = b² − 4ac = (− 3)² − 4 * 1 * (− 108) = 9 + 432 = 441
Корни уравнения находятся по формулам
x1 =(− b + √D)/2a,
x2 =(− b − √D)/2a:
x1 =(-(-3) + √441)/ (2*1)=(3 + 21)/2=24/2=12
x2 =(-(-3) -√441)/ (2*1)=(3 - 21)/2=-18/2=−9, но скорость не можеть быть со знаком минус.
Поэтому
скорость первого велосипедиста = х км/ч = 12 км/ч,
скорость другого велосипедиста = х-3 км/ч = 12-3=9 км/ч
ответ: скорость первого велосипедиста = 12 км/ч, скорость другого велосипедиста =9 км/ч