Нехай власна швидкість човна дорівнює х км/год, тоді швидкість за течією дорівнює (х+2) км/год, і швидкість проти течії дорівнює (х-2) км/год. Моторний човен проти течії пройшов 10 км: він зробив це за 10/(х-2) год. За течією він пройшов 9 км: він зробив це за 9/(х+2) год. Так як при цьому за течією він йшов на 30 хвилин менше, ніж проти течії, складемо рівняння і обов'язково врахуємо, що 30 хв = 0,5 год:
9/(х+2)+0,5=10/(х-2)
10/(х-2)-9(х+2)=0,5
(20х+40-18х+36-х²+4)/(2х²-8)=0
-х²+2х+80=0
х²-2х-80=0
(х+8)(х-10)=0
х=-8(км/год) – не підходить за змістом завдання: швидкість не може бути від'ємною;
х=10(км/год) – власна швидкість човна.
Відповідь: 10 км/год.
du/dx=(-y/x²)*1/(1+y²/x²)=-y/(x²+y²), du/dy=(1/x)*x²/(x²+y²)=x/(x²+y²)
2) находим значение этих производных в точке М:
du/dx(2;-2)=2/(4+4)=1/4=0,25; du/dy(2;-2)=2/(4+4)=1/4=0,25.
3) Уравнение x²+y²=4x, или x²-4x+y²=(x-2)²+y²-4=0, или (x-2)²+y²=4, очевидно, есть уравнение окружности с центром в точке М1(2;0) и радиусом r=√4=2.
4) Обозначим F(x,y)=x²-4x+y². Найдём dF/dx и dF/dy.
dF/dx=2x-4, dF/dy=2y.
5) Найдём значения этих производных в точке М.
dF/dx(2;-2)=0, dF/dy(2;-2)=-4. Эти значения являются координатами нормального вектора, проходящего через точку М, то есть вектора, перпендикулярного вектору, направленному по касательной к окружности в данной точке М. Из бесчисленного множества последних выберем нормированный. Пусть этот вектор имеет координаты Ax и Ay. Тогда, так как векторы перпендикулярны, их скалярное произведение равно 0. Но последнее можно записать в виде 0*Ax+(-4)*Ay=0, откуда Ay=0. С другой стороны, скалярное произведение Ax*Ax+Ay*Ay=(Ax)²+(Ay)²=1, откуда Ax=+1 и Ax=-1.
6) Производная по направлению в точке М вычисляется по формуле
du/dl=du/dx(2;-2)*cos α +du/dy(2;-2)*cos β, где cos α=Ax/модуль А, cos β=Ay/модуль А. Но модуль А=1, и тогда cos α=1 либо cos α=-1, cos β=0. А тогда du/dl=0,25*1=0,25, либо du/dl=-0,25. ответ: 0,25 либо -0,25.