|х+14| - 7* |1 - х| > х или что тоже самое |х+14| - 7* |x -1| > х разобьем на три интервала 1) х+14<0 и x-1<0 x<-14 и x<1 объединяя оба эти условия получим x<-14 на этом интервале наше неравенство имеет вид -(х+14) + 7* (x -1) > х -x-14+7x-7>x 6x-21>x 5x>21 x>21/5 но это противоречит условию x<-14. На этом интервале решения нет. 2) х+14≥0 и x-1<0 x≥-14 и x<1 объединяя оба эти условия получим -14≤x<1 на этом интервале наше неравенство имеет вид (х+14) + 7* (x -1) > х x+14+7x-7>x 8x+7>x 7x>-7 x>-1 объединяя это условие с -14≤x<1 получим -1 <x<1
3) х+14≥0 и x-1≥0 x≥-14 и x≥1 объединяя оба эти условия получим x≥1 на этом интервале наше неравенство имеет вид (х+14) - 7* (x -1) > х x+14-7x+7>x -6x+21>x 21>7x 3>x объединяя это условие с x≥1 получим 1≤x<3 теперь последнее действие: объединим решения 2) и 3) -1 <x<3 или x∈(-1;3)
за интересную задачу)
Тут все просто: координаты вершины параболы находим через производную данной функции, счтая К числом.
у = x^2 - 2*2013Kx + (2013K)^2 + 2K + 15
y' = 2x - 2*2013K (все остальное - число, производная равна нулю)
Приравнивая к нулю, поллучаем выражение для абсциссы вершины параболы: х = 2013К
Ордината равна у = 2К + 15
По условию х = 2013К < 0
у = 2К + 15 > 0
Отсюда К принадлежит отрезку от - 7,5 до 0. Следовательно, целых значений К, удовлетворяющих условию, всего 7: это - 7, -6, -5, -4,-3, -2, -1.
ответ: 7