Квадратный корень – это частный случай степенной функции Функция Функция определена при x (0..+oo); Область значений (-oo..0) Функция убывает на всем диапазоне определения. Корень: x=0
Таблица точек x:0 4 9 y:0 -2 -3
Функция Функция определена для всех действительных чисел. Функция убывает на всем диапазоне определения. Корень: x=0 График функции - прямая.
Таблица точек x:0 4 y:0 -2
a) наибольшее и наименьшее значения функции на отрезке [4;7] наибольшее при x=4, y=-2 наименьшее при x=7, y=-2,65
б)Найдите координаты точек пересечения этой функции с прямой Две точки A(0,0) B(4,-2)
Cosφ = √2 / 2 φ = ±arccos(√2 / 2) + 2пk, kЄZ φ = ±п/4 + 2пk, kЄZ -4п<=φ<=0 (по условию) -4п<=п/4 + 2пk<=0 или -4п<=(-п/4) + 2пk<=0 -9п/4<= 2пk<=-п/4 -7п/4<=2пk<=п/4 -9/8<=k<=-1/8 -7/8<=k<=1/8 k=1 k=0 Подставляем значения k в наше значение угла, учитывая, что каждое относиться к этому выражению со своим знаком, 1-й k к выражению со знаком "+", 2-й со знаком "-" при п/4
Функция
Функция определена при x (0..+oo); Область значений (-oo..0)
Функция убывает на всем диапазоне определения.
Корень: x=0
Таблица точек
x:0 4 9
y:0 -2 -3
Функция
Функция определена для всех действительных чисел.
Функция убывает на всем диапазоне определения.
Корень: x=0
График функции - прямая.
Таблица точек
x:0 4
y:0 -2
a) наибольшее и наименьшее значения функции на отрезке [4;7]
наибольшее при x=4, y=-2
наименьшее при x=7, y=-2,65
б)Найдите координаты точек пересечения этой функции с прямой
Две точки
A(0,0)
B(4,-2)