Подобные слагаемые:
а) 1 и -1,4
б) подобных нет
в) 2аb и – 3ba; х и -х
сos(4arctgx)=1/2
4arctgx=±arccos(1/2)+2πn, n∈Z;
4arctgx=±π/3+2πn, n∈Z;
arctgx=±π/12+πn/2, n∈Z;
x=tg(±π/12+πn/2), n∈Z;
cos((±π/12+πn/2))≠0
Поскольку арктангенс - это угол из (-π/2;π/2), при n =0 получим два ответа х=tg(±π/12).
tg(π/12)=(tg(π/4-π/6))=(1 -√3/3)/ (1+√3/3)=
(3-√3)/(3+√3) = (3-√3)²/(3²-(√3)² ) =(12-2√3)/(9-3)=2-√3/3
tg(-π/12)=-tg(π/12)=-(2-√3/3)=-2+√3/3
При n=1 х=tg(±π/12+π/2), указанному промежутку удовлетворяет tg(5π/12)=(tg(π/4+π/6))=(1 +√3/3)/ (1-√3/3)=
(3+√3)/(3-√3) = (3+√3)²/(3²-(√3)² ) =(12+2√3)/(9-3)=2+√3/3
При n=-1 х=tg(±π/12-π/2), указанному промежутку удовлетворяет tg(-5π/12)=-tg5π/12=-(2+√3/3 )=-2-√3/3
При n=2 х=tg(±π/12+π); и при n=-2 х=tg(±π/12-π), Корней нет. Остальные можно не проверять, они не войдут в промежуток
(-π/2;π/2).
ответ. х=±(2-√3/3); х=±(2+√3/3 )
Объяснение:
Задание 1
а) 5, 10, 15,...; - возрастающая арифметическая прогрессия (d = 5).
б) 3, 0, - 3,...; - убывающая арифметическая прогрессия (d = -3).
г) - 6, - 4, - 2,...; - возрастающая арифметическая прогрессия (d = 2).
д) 11, 9, 7,...; - убывающая арифметическая прогрессия (d = -2).
в) 7, 12, 17,...; - возрастающая арифметическая прогрессия (d = 5).
Задание 2.
d = 2;
a1 = 3, тогда прогрессия такова:
3; 5; 7; 9; 11.
Задание 3.
а) 1, 1, 1, 1, 1, 1, ...;
б) 5, 3, 1, - 1, - 3, - 5, ...
в) - 2, 2, 6, 10, 14, 18,...
Объяснение:
А и Б нет подобных
В) = -ab