Что-то последнее непонятно. что 3п/2? там обычно должно быть написано, к какой четверти принадлежит угол. может, от 3п/2 до 2п? короче, sinа = корень из 1-cos^2а = корень из 1 - 16/25=корень из 9/25= 3/5 (тут важно знать, к какой четверти принадлежит угол. внимательно задание читай, если от 3п/2 до 2п - то будет -3/5, если от 0 до п/2, то +3/5, если от п/2 до п, то +3/5, если от п до 3п/2, то -3/5 sin2а = 2sinacosa = 2*3/5*4/5=0,96 (или МИНУС 0,96, в зависимости от предыдущего действия, с каким знаком получился синус)
√√Пусть длина трассы x м, стартуют они в точке А, а встречаются в В. 1-ое тело имеет скорость v1 (м/мин), 2-ое тело v2 < v1 (м/мин). В момент встречи оба тела вместе проехали весь круг, за время t = x/(v1+v2) (мин) При этом 1-ое тело на 100 м больше, чем 2-ое тело. v1*t = v2*t + 100 v1*x/(v1+v2) = v2*x/(v1+v2) + 100 Умножаем все на (v1+v2) v1*x = v2*x + 100(v1+v2) x(v1-v2) = 100(v1+v2) x = 100(v1+v2)/(v1-v2)
1-ое тело вернулось в точку А через 9 мин, то есть за 9 мин оно расстояние, которое до встречи ое тело за t мин. v1*9 = v2*t = v2*x/(v1+v2) 9v1(v1+v2) = v2*x А 2-ое тело вернулось в А через 16 мин, то есть за 16 мин оно расстояние, которое перед этим ое тело за t мин. v2*16 = v1*t = v1*x/(v1+v2) 16v2(v1+v2) = v1*x
Получили систему из 3 уравнений с 3 неизвестными. { x = 100(v1+v2)/(v1-v2) { 9v1(v1+v2) = v2*x { 16v2(v1+v2) = v1*x Подставляем 1 уравнение во 2 и 3 уравнения { 9v1(v1+v2) = v2*100(v1+v2)/(v1-v2) { 16v2(v1+v2) = v1*100(v1+v2)/(v1-v2) Сокращаем (v1+v2) { 9v1 = 100v2/(v1-v2) { 16v2 = 100v1/(v1-v2) Получаем { 0,09v1 = v2/(v1-v2) { 0,16v2 = v1/(v1-v2)
короче, sinа = корень из 1-cos^2а = корень из 1 - 16/25=корень из 9/25= 3/5 (тут важно знать, к какой четверти принадлежит угол. внимательно задание читай, если от 3п/2 до 2п - то будет -3/5, если от 0 до п/2, то +3/5, если от п/2 до п, то +3/5, если от п до 3п/2, то -3/5
sin2а = 2sinacosa = 2*3/5*4/5=0,96 (или МИНУС 0,96, в зависимости от предыдущего действия, с каким знаком получился синус)