Приравниваем к нулю производную, находим корни, проставляем знаки, находим наименьшее/наибольшее (в зависимости от задания, здесь я этого не вижу - пропустили) значение ф-ции: 2e^2x - 2e^x=0
2e^x(e^x - 1) = 0 e^x никогда нулем быть не может ⇒ e^x -1 = 0 e^x = 1 (любое число, возведенное в нулевую степень, есть единица) ⇒ x= 0 (ок, 0 подходит в указанный промежуток)
Итак, x=0 - точка минимума (по-видимому, и спрашивается найти наименьшее значение ф-ции) При x=0 y= 1 -2 + 8 = 7
Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
1) Подставляем в формулу все известные значения и вычисляем. Но помним, что нам нужно наибольшее время, поэтому формула превращается в неравенство.
T(t) = 1600
1600 >= 1450 + 180*t - 30*t²
0>= -30*t² +180t - 150 ⇔ 0>=-t² + 6t - 5 Нули: t₁ = 1 t₂ = 5 итого имеем t∈(-∞;1] и [5;+∞)
ответ: 1 (потом прибор "умирает")
2) V=1/3*S(осн)*H S(осн)= 35√2*35√2 = 2450 H = √((37)² - (35)²) = √(1369 - 1225) = 12 V = 1/3 * 2450 * 12 = 2450 * 4 = 9800
ответ: 9800
3) Ур-е получается такое: 0,11(2x + 9)=0,05x + 0,13(x+9)
0,22x + 0,99 - 0,05x - 0,13x - 1,17 = 0
0,04x = 0,18
x = 4,5
ответ: 4,5
4) Находим производную: y' = 2e^2x - 2e^x
Приравниваем к нулю производную, находим корни, проставляем знаки, находим наименьшее/наибольшее (в зависимости от задания, здесь я этого не вижу - пропустили) значение ф-ции: 2e^2x - 2e^x=0
2e^x(e^x - 1) = 0 e^x никогда нулем быть не может ⇒ e^x -1 = 0 e^x = 1 (любое число, возведенное в нулевую степень, есть единица) ⇒ x= 0 (ок, 0 подходит в указанный промежуток)
Итак, x=0 - точка минимума (по-видимому, и спрашивается найти наименьшее значение ф-ции) При x=0 y= 1 -2 + 8 = 7
ответ: 7