PΔ = 30 cм
Объяснение:
a и b - катеты
По т. Пифагора (1-ое уравнение) и по формуле площади прямоугольного треугольника (2-ое уравнение) получаем систему:
{a² + b² = 13²
{1/2 (ab) = 30
{a² + b² = 169
{ab = 60
(a+b)²=a² + 2ab +b²= a² + b² + 2ab = 169 + 2*60 = 169 + 120 = 289 = 17²
(a+b)² = 17²
1) a + b = 17
2) a + b = -17 - не подходит по смыслу задачи.
{a + b = 17
{ab = 60
a = 17-b
(17-b)b = 60
17b - b²- 60 = 0
b²- 17b + 60 = 0
D = 289 - 240 = 49
b₁ = (17-7)/2 = 5 a₁ = 17 - 5 = 12
b₂ = (17+7)/2 = 12 a₂ = 17 - 12 = 5
PΔ = 12 + 5 + 13 = 30 (cм) - периметр.
1) 11х = 36 - х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
36 - x = - ( x - 36)
Уравнение после преобразования:
11x = - (x - 36)
Упрощаем:
12x = 36
Сокращаем:
12(убираем)x = 12(убираем) * 3
x=3
2) 9х + 4 = 48 - 2х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
48 - 2x = -2 * (x - 24)
Уравнение после преобразования:
9x + 4 = -2 * (x - 24)
Упрощаем:
11x = 44
Сокращаем:
11(убираем)x = 11(убираем) * 4
x=4
3) 8 - 4х = 2х - 16
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование левой части уравнения:
8 - 4x = -4 * (x - 2)
Делаем преобразование правой части уравнения:
2x - 16 = 2 * (x - 8)
Уравнение после преобразования:
-4 * (x - 2) = 2 * (x - 8)
Упрощаем:
-6x = -24
Сокращаем:
-6(убираем)x = -6(убираем) * 4
x = 4
За остальным, если желаешь - в ЛС.
Решение задания прилагаю