М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
NICKMASTER121
NICKMASTER121
15.03.2023 01:20 •  Алгебра

F(x) =x*2-5. Знайдіть f(-1)
1.-6
2.-4
3. - 3
4. 4
плс​

👇
Ответ:
lizafedkovich
lizafedkovich
15.03.2023

Объяснение:

Решение на фотографии


F(x) =x*2-5. Знайдіть f(-1)1.-62.-43. - 34. 4 плс​
4,7(76 оценок)
Открыть все ответы
Ответ:
BC122
BC122
15.03.2023
1) xy'+y=0
Разрешим наше дифференциальное уравнение относительно производной
y'=- \dfrac{y}{x} - уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
\dfrac{dy}{dx} =- \dfrac{y}{x} \\ \\ \dfrac{dy}{y} =- \dfrac{dx}{x}
Интегрируя обе части уравнения, получаем
\ln|y|=\ln| \frac{1}{x} |+\ln C\\ \\ \ln|y|=\ln| \frac{C}{x}|
y= \dfrac{C}{x}- общее решение

(1-x^2) \frac{dx}{dy} +xy=0\\ \\ (1-x^2) \frac{dx}{dy} =-xy
Разделяем переменные
\dfrac{(x^2-1)dx}{x} = ydy

интегрируя обе части уравнения, получаем

-\ln|x|+ \dfrac{x^2}{2} = \dfrac{y^2}{2} +C - общий интеграл

Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует

Пример 3. x^2+y^2-2xy\cdot y'=0
Убедимся, является ли дифференциальное уравнение однородным.
(\lambda x)^2+(\lambda y)^2-2\cdot\lambda x\cdot \lambda y\cdot y'=0 |:\lambda^2\\ \\ x^2+y^2-2xyy'=0

Итак, дифференциальное уравнение является однородным.
Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену 
y=ux, тогда y'=u'x+u

Подставляем в исходное уравнение

x^2+u^2x^2-2x\cdot ux(u'x+u)=0\\ \\ x^2(1+u^2-2uu'x-2u^2)=0\\ \\ x=0\\ \\ 1-u^2-2uu'x=0\\ \\ u'= \dfrac{1-u^2}{2ux}

Получили уравнение с разделяющимися переменными

Воспользуемся определением дифференциала

\dfrac{du}{dx} =\dfrac{1-u^2}{2ux}

Разделяем переменные

\dfrac{du^2}{1-u^2} = \dfrac{dx}{x}

Интегрируя обе части уравнения, получаем

\ln\bigg| \dfrac{1}{1-u^2} \bigg|=\ln|Cx|

\dfrac{1}{1-u^2} =Cx

Обратная замена

\dfrac{x^2}{x^2-y^2} =Cx - общий интеграл

Пример 4. y''-4y'+4=0
Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное.
Воспользуемся методом Эйлера
Пусть y'=e^{kx}, тогда будем иметь характеристическое уравнение следующего вида:
k^2-4k+4=0\\ (k-2)^2=0\\ k_{1,2}=2

Тогда общее решение будет иметь вид:

y=C_1y_1+C_2y_2=C_1e^{2x}+C_2xe^{2x} - общее решение

Пример 5. y''+4y'-5y=0
Аналогично с примером 4)
Пусть y=e^{kx}, тогда получаем
k^2+4k-5=0\\ (k+2)^2-9=0\\ \\ k+2=\pm 3\\ k_1=1\\ k_2=-5

Общее решение: y=C_1e^{x}+C_2e^{-5x}

Найдем производную функции
y'=C_1e^x-5C_2e^{-5x}

Подставим начальные условия

\displaystyle \left \{ {{4=C_1+C_2} \atop {2=C_1-5C_2}} \right. \to \left \{ {{C_1=4-C_2} \atop {2=4-C_2-5C_2}} \right. \to \left \{ {{C_1= \frac{11}{3} } \atop {C_2=\frac{1}{3} }} \right.

y=\frac{11}{3} e^x+\frac{1}{3} e^{-5x} - частное решение
4,4(24 оценок)
Ответ:
Scruff17
Scruff17
15.03.2023

1. а) 5xy³*(-2x²y)⁴ = 5xy³*16x⁸y⁴ = 80x¹⁺⁸y³⁺⁴ = 80x⁹y⁷

б) (2y-3x)² - (3x+2y)(2y-3x) = 4y²-12xy+9x²-6xy-9x²+4y²-6xy = 8y²-24xy

2. а) 4ab³-a³b = ab (4b²-a²) = ab (2b-a)(2b+a)

б) -9b-6b²-b³ = -b (9+6b+b²) = -b (b+3)²

3. \frac{5-x}{2} + \frac{4x-3}{3} = 4

Здесь делаем всем НОЗ: 6.

\frac{3(5-x)}{6} + \frac{2(4x-3)}{6} = \frac{24}{6}

\frac{3(5-x)}{6} + \frac{2(4x-3)}{6} - \frac{24}{6}

Теперь, когда у нас стали одинаковые знаменатели, решаем только числитель:

3(5-x)+2(4x-3)-24 = 0

15-3x+8x-6-24 = 0

-3x+8x+15-6-24 = 0

-5x-13 = 0

-5x = 13

x = -2,6

4. Увы, задачу не понял.

5. y = 4x-7 - линейная функция, графиком является прямая.

y = x+83 - линейная функция, графиком является прямая.

Построим таблицы:

1) y = 4x-7

x | 0 1

y | -7 -3

y₁ = 4*0-7 = -7

y₂ = 4*1-7 = -3

2) y = x+83

x | 0 1

y | 83 84

y₁ = 0+83 = 83

y₂ = 1+83 = 84

Как строить координатную плоскость - думаю, не надо объяснять.

4,6(78 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ