3.
sin²φ+2cos²φ / sin²φ-cos²φ, если tgφ = 2
Разделим числитель и знаменатель на cos²φ, получим:
sin²φ+2cos²φ / sin²φ-cos²φ = sin²φ+2cos²φ/cos²φ / sin²φ -cos²φ/cos²φ = sin²φ/cos²φ + 2cos²φ/cos²φ / sin²φ/cos²φ - cos²φ/cos²φ = tg²φ + 2/tg²φ - 1 = 2²+2/2²-1 = 4+2/4-1 = 6/3 = 2
ответ: 2
4.
sinx × cosx + cos²x + 3sin²x = 3
sinx × cosx + cos²x + 3(1-cos²x) = 3
sinx × cosx + cos²x + 3 - 3cos²x = 3
sinx × cosx + cos²x + 3 - 3cos²x - 3 = 0
sinx × cosx + cos²x - 3cos²x = 0
sinx × cosx - 2cos²x = 0
cosx × (sinx - 2cosx) = 0
cosx = 0 или sinx - 2cosx = 0
x₁ = π/2 + πn, n∈Z sinx = 2cosx | : cosx
sinx/cosx = 2cosx/cosx
tgx = 2
x₂ = arctg 2 + πn, n∈Z
ответ: x₁ = π/2 + πn, n∈Z; x₂ = arctg 2 + πn, n∈Z
2cosx+cos2x=2sinx
2cosx+(2cos^2x-1)-2sinx=0
2cosx+2cos^2x-(sin^2x+cos^2x)-2sinx=0
2cosx+2cos^2x-sin^2x-cos^2x-2sinx=0
cos^2x+2cosx-sin^2x-2sinx=0
Произведём группировку
cos^2x-sin^2x+2cosx-2sinx=0
(cosx+sinx)(cosx-sinx)+2(cosx-sinx)=0
выносим общий множ. за скобки
(cosx-sinx)(cosx+sinx+2)=0
решаем по отдельности каждое ур-ие
1) cosx-sinx=0 /:cosx≠0
1-tgx=0
tgx=1
x=pi/4+pik, k ∈Z
2) cosx+sinx= - 2
√2(1/√2*cosx+1/√2*sinx)= - 2
sin(pi/4)cosx+cos(pi/4)*sinx= -2/√2
sin(pi/4+x)=-√2
-√2=1,41
нет реш. , т.к. x∈[-1;1]
pi/4+pik, k ∈Z