A) x(n) = 2/(3/2)^n = 2*(2/3)^n; lim x(n) = 0 Если число, которое больше 0, но меньше 1, возводят в степень, то при n->oo получается 0. Если это число больше 1, то при n->oo будет +оо. Если число равно 1 - это неопределенность вида 1^oo б) x(n) = (2n - 1)/(5n + 2). lim x(n) = 2/5. Делим числитель и знаменатель на n, получаем (2 - 1/n) / (5 + 2/n) Числа 1/n и 2/n при n ->oo равны 0. Остается 2/5. в) x(n) = (n^2 + 4n)/(3n^2 - 2n + 1), lim x(n) = 1/3. Точно также, как в б), делим всё на n^2. Получается (1 + 4/n) / (3 - 2/n + 1/n^2) Все дроби при n -> oo равны 0. Остается 1/3.
Cos α=-√1-sin²α ( знак минус перед корнем потому, что угол во второй четверти по дано пи/2<a<пи.) получаем cos α= -√1-(5/13)²= - √1-25/169=-√144/169=-12/13 sin 2α= 2 sinα·cosα=2·(5/13)·(-12/13)=-120/169 причем угол α находится в промежутке π<2α<2π и так как его синус отрицательный, то значит π<2α<3π/2, т.е в третьей четверти и потому перед косиносом двух альфа стави знак минус cos 2α=-√1- sin²2α=-√1-(-120/169)²=-√(169²-120²)/169²= - √(169-120)(169+120)/169²=-√289·49/169²=-17·7/169-119/169 tg2α=sin 2α: cos 2α=120/119
Если число, которое больше 0, но меньше 1, возводят в степень,
то при n->oo получается 0.
Если это число больше 1, то при n->oo будет +оо.
Если число равно 1 - это неопределенность вида 1^oo
б) x(n) = (2n - 1)/(5n + 2). lim x(n) = 2/5.
Делим числитель и знаменатель на n, получаем
(2 - 1/n) / (5 + 2/n)
Числа 1/n и 2/n при n ->oo равны 0. Остается 2/5.
в) x(n) = (n^2 + 4n)/(3n^2 - 2n + 1), lim x(n) = 1/3.
Точно также, как в б), делим всё на n^2. Получается
(1 + 4/n) / (3 - 2/n + 1/n^2)
Все дроби при n -> oo равны 0. Остается 1/3.