Обозначим cлагаемые за Х,У,Z
(X+Y+Z)/3>=1
Согласно неравенству о среднем арифметическом и среднем геометрическом достаточно доказать :
ХУZ>=1
Вернемся к исходным обозначениям
8abc>=(a+b)(b+c)(a+c)
Снова согласно неравенству о среднем арифметическом и среднем геометрическом видим
a+b>=2sqrt(ab) b+c>=2sqrt(сb) (a+c)>=2sqrt(ac)
поэтому можим заменить сомножители справа на произведение
2sqrt(ab)*2sqrt(aс)*2sqrt(сb)=8abc, что и доказывает неравенство.
Равенство достигается только при а=с=b
1)
.
ответ: В.
2)
ответ: А.
3)
ответ: Г.
4)
ответ: А.
5)
ответ: А.
6)
Для начала решим систему неравенств, определяющую область допустимых значений :
Возводим обе части уравнения в квадрат.
По теореме Виета:
3 не подходит под область допустимых значений.
ответ: корень только один, и он положительный.
7)
, тогда корень принадлежит промежутку .
ответ: .
8)
Областью определения функции является решение следующего неравенства:
Так как основание меньше единицы, то:
ответ: .
9)
Найдём область значения функции. , тогда . Значит, . Следовательно, из перечисленных чисел в множество значений входит только 5 (4 не входит, так как концы не включаем).
ответ: 5.
10)
Условие чётности функции: . Проверяем для каждой.
- не подходит.
- не подходит.
- подходит.
ответ: .