скорость пешехода = 5 км/ч
скорость велосипедиста = 12,5 км/ч
Объяснение:
S = v × t,
S - путь
v - скорость
t - время
для пешехода:
S1 = v1 × t1
для велосипедиста:
S2 = v2 × t2
по условию задачи:
1. пешеход и велосипедист преодолели один путь, значит
S1 = S2 = 15 км
2. скорость пешехода и велосипедиста связаны как
v1 × 2,5 = v2
3. пешеход и велосипедист прибыли одновременно, но велосипедист был в пути на 1 час 48 минут меньше, чем пешеход, значит
t2 = t1 - 1 час 48 минут
переведем 1 час 48 минут в часы:
1 час 48 минут = 1 48/60 = 1,8 часа,
тогда
t2 = t1 - 1,8
составим систему уравнений:
S1 = v1 × t1
S2 = v2 × t2
подставим то, что знаем:
15 = v1 × t1
15 = 2,5 × v1 × (t1 - 1,8)
мы получили систему уравнений: 2 уравнения с 2 неизвестными
найдем v1:
перепишем второе уравнение:
15 = 2,5 x v1 × t1 - 2,5 × v1 × 1,8
15 = 2,5 x v1 × t1 - 4,5 × v1
из первого уравнения:
v1 = 15/t1
подставим во второе уравнение:
15 = 2,5 × 15/t1 × t1 - 4,5 × v1
15 = 2,5 × 15 - 4,5 × v1
15 = 37,5 - 4,5 × v1
4,5 × v1 = 37,5 - 15
4,5 × v1 = 22,5
v1 = 22,5/4,5
v1 = 5
нет необходимости решать всю систему (то есть находить и t1), мы нашли v1:
v1 = 5 км/ч
S измерено в километрах, t в часах, значит скорость в км/ч
подставим в
v1 × 2,5 = v2
получим
v2 = 5 × 2,5 = 12,5
v2 = 12,5 км/ч
скорость пешехода = 5 км/ч
скорость велосипедиста = 12,5 км/ч
Объяснение:
СМЕНА ЗНАКА В НЕРАВЕНСТВАХ
И логарифмическая, и показательная функция могут быть либо монотонно убывающей (при основании < 1 ), либо монотонно возрастающей ( при основании больше 1 ). Если функция является монотонно возрастающей, тогда ее значение будет тем больше, чем больше аргумент. Поэтому, если основание логарифма или основание показательной функции больше 1, то при снятии логарифма или экспоненты знак неравенства сохраняется. Если функция монотонно убывает, то ее значение тем меньше, чем больше аргумент. Поэтому, при основании меньше 1 знак неравенства изменяется на противоположный.
Это очень важное свойство, о котором, тем не менее, очень часто забывают.
1) 2х^2-х=0
х(2х-1)=0
х=0 или 2х-1=0
х=0,5
ответ:0; 0,5
2) 1-4х^2=0
(1-2х) (1+2х)=0
1-2х=0 или 1+2х=0
х=0,5 х=-0,5
ответ: -0,5; 0,5
3) 5х^2-х
= 0 О.О.У.
х х не равен 0
5х^2-х=0
х(5х-1)=0
х=0, не подходит по О.О.У. или 5х-1=0
х=1/5
ответ:1/5