x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
скорость моторной лодки от пристани до острова равна 50 км/ч.
1. x км/ч – скорость, с которой моторная лодка плыла от пристани до острова.
2. Составляем уравнение.
150 / x = 150 / (x + 10) + 0,5;
150 / x – 150 / (x + 10) = 0,5;
(150 * (x + 10) – 150x) / (x^2 + 10x) = 0,5;
(150x + 1500 – 150x) / (x^2 + 10x) = 0,5;
1500 = 0,5 * (x^2 + 10x);
0,5x^2 + 5x – 1500 = 0;
x^2 + 10x – 3000 = 0;
Дискриминант = 10 * 10 + 4 * 1 * 3000 = 12100 (корень из 12100 равен 110)
x = (-10 + 110) / 2 или x = (-10 - 110) / 2;
x ¹ = 50 или x = -60;
²
Так как скорость не может быть отрицательной, то она равна 50 км/ч.