1. Воспользуемся следующими тригонометрическими формулами:
sina + sinb = 2sin((a + b)/2) * cos((a - b)/2);
cos2a = 1 - 2sin^2(a);
sin3x + sin5x + 2sin^2(x/2) = 1;
2sin((5x + 3x)/2) * cos((5x - 3x)/2) - (1 - 2sin^2(x/2)) = 0;
2sin4x * cosx - cosx = 0.
2. Вынесем общий множитель cosx за скобки:
cosx(2sin4x - 1) = 0;
[cosx = 0;
[2sin4x - 1 = 0;
[cosx = 0;
[sin4x = 1/2;
[x = π/2 + πk, k ∈ Z;
[4x = π/6 + 2πk; 5π/6 + 2πk, k ∈ Z;
[x = π/2 + πk, k ∈ Z;
[x = π/24 + πk/2; 5π/24 + πk/2, k ∈ Z.
ответ: π/2 + πk; π/24 + πk/2; 5π/24 + πk/2, k ∈ Z.
30/(v1+v2)=1,2
30/(v1-v2)=1,4
v1+v2=30/1,2=25
v1-v2=30/1,4=300/14=150/7
Сложив эти два уравнения и заменив получившимся уравнением первое уравнение системы, получим:
2*v1=325/7
v1-v2=150/7
Из первого уравнения находим v1=325/(2*7)=325/14 км/ч. Подставляя это выражение во второе уравнение, получаем:
325/14-v2=150/7=300/14, v2=325/14-300/14=25/14 км/ч.
ответ: скорость реки равна 25/14 км/ч, скорость лодки равна 325/14 км/ч.