1)) Решение:
1. Обозначим: x – первое неизвестное число, y – второе неизвестное число.
2. По условию задачи была составлена система уравнений:
x^2 – y^2 = 6;
(x - 2)^2 – (y - 2)^2 = 18;
1. Преобразуем второе уравнение:
x^2 – 4x + 4 – (y^2 – 4y + 4) = 18;
x^2 – 4x + 4 – y^2 + 4y – 4 = 18;
x^2 – y^2 + 4y – 4x = 18;
Подставим первое уравнение: 6 + 4y – 4x = 18;
4y – 4x = 18 – 6;
4(y – x) = 12;
y – x = 12 / 4;
y – x = 3;
y = 3 + x;
1. Система равнений приобрела следующий вид:
y = 3 + x;
x^2 – y^2 = 6;
1. Подставим первое уравнение во второе:
x^2 – (3 + x)^2 = 6;
x^2 – (9 + 6x + x^2) = 6;
x^2 – 9 – 6x – x^2 = 6;
-6x = 6 + 9;
-6x = 15;
x = 15 / (-6);
x = -2,5;
Если x = -2,5, то y = 3 + x = 3 – 2,5 = 0,5;
Найдём сумму: -2,5 + 0,5 = -2.
ответ: сумма чисел равна -2.
(a₂+1) / (a₁+1) = (a₃+13) / (a₂+1) {Запись говорит о том что это геометрическая прогрессия q=q}
Дальше каждый член арифметической прогрессии расписываем:
a₂=a₁+d
a₃=a₁+2d
a₁+a₁+d+a₁+2d=24
3a₁+3d=24
3(a₁+d)=24
a₁+d=8 {Получили из первого уравнения}
(a₁+d+1) / (a₁+1) = (a₁+2d+13) / (a₁+d+1) {Получили из второго уравнения}
Решаем систему уравнений:
a₁=8-d
(8-d+d+1) / (8-d+1) = (8-d+2d+13) / (8-d+d+1)
9 / (9-d) =(21+d) / 9
(21+d)(9-d)=81
189+9d-21d-d²=81
-d²-12d+108=0
ответ: d₁ = -18; d₂ = 6
По условию арифметическая прогрессия возрастающая, следовательно d=6
Проверка:
Для арифметической:
a₁=2
a₂=8
a₃=14
∑=24
Для геометрической:
a₁=3
a₂=9
a₃=27
q=3