М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
2002elena79
2002elena79
16.07.2021 04:52 •  Алгебра

33.8. Для некоторого приведенного многочлена Р(х) известны его сте- пень и все его корни с учетом их кратности. Заполните табли-
цу 22, запишите разложение многочлена Р(х) на множители.
Таблица 22


33.8. Для некоторого приведенного многочлена Р(х) известны его сте- пень и все его корни с учетом их

👇
Ответ:
LizaKrem
LizaKrem
16.07.2021

1.P(x) = (x + 1)(x - 3)(x - 2)²

2.P(x) = (x - 1)²(x - 3)²(x + 2)³

3.P(x) = (x - 2)(x + 1)²(x - 4)²(x - 1)³

4.P(x) = x(x - 2)²(x - 5)²(x - 7)²(x + 3)³

4,4(40 оценок)
Открыть все ответы
Ответ:
alexvelova
alexvelova
16.07.2021

Объяснение:

1) прямая   у=2x+37 не является  касательной    к  графику    функции f(x)=x³-3x²-7x+10  ни при каких значениях x. Докажем это. Предположим что это не так. пусть графики данных функций касаются в некоторой точке x₀=t. Тогда f(t)=t³-3t²-7t+10

f'(x)=3x²-6x-7;  f'(t)=3t²-6t-7

Уравнение касательной будет иметь вид:

y=f(t)+f'(t)(x-t)=t³-3t²-7t+10+(3t²-6t-7)(x-t)=(3t²-6t-7)x-2t³+3t²+10=2x+37⇔

3t²-6t-7=2  и -2t³+3t²+10=37

3t²-6t-7=2

3t²-6t-9=0

t²-2t-3=0⇒t₁=-1, t₂=3

t=-1⇒-2t³+3t²+10=2+3+10=15≠37

t=3⇒-2t³+3t²+10=-16+27+10=21≠37

t∈∅

2) прямая у=x+1 касается к графику функции f(x)=ах²+2x+3

а≠0, иначе прямая касалась бы прямой.

Пусть графики данных функций касаются в некоторой точке x₀=t. Тогда f(t)=аt²+2t+3

f'(x)=2ax+2;  f'(t)=2at+2

Уравнение касательной будет иметь вид:

y=f(t)+f'(t)(x-t)=аt²+2t+3+(2at+2)(x-t)=(2at+2)x-at²+3=x+1⇔2at+2=1  и -at²+3=1

2at+2=1⇒at=-0,5

2=at²=at·t=-0,5t⇒t=-4⇒a=1/8

3)  x(t)=0,5t³-3t²+2t

v(t)=x'(t)=1,5t²-6t+2

v(6)=1,5·6²-6·6+2=54-36+2=20 м/с

4,7(25 оценок)
Ответ:
yusdanila
yusdanila
16.07.2021

Объяснение:

1) прямая   у=2x+37 не является  касательной    к  графику    функции f(x)=x³-3x²-7x+10  ни при каких значениях x. Докажем это. Предположим что это не так. пусть графики данных функций касаются в некоторой точке x₀=t. Тогда f(t)=t³-3t²-7t+10

f'(x)=3x²-6x-7;  f'(t)=3t²-6t-7

Уравнение касательной будет иметь вид:

y=f(t)+f'(t)(x-t)=t³-3t²-7t+10+(3t²-6t-7)(x-t)=(3t²-6t-7)x-2t³+3t²+10=2x+37⇔

3t²-6t-7=2  и -2t³+3t²+10=37

3t²-6t-7=2

3t²-6t-9=0

t²-2t-3=0⇒t₁=-1, t₂=3

t=-1⇒-2t³+3t²+10=2+3+10=15≠37

t=3⇒-2t³+3t²+10=-16+27+10=21≠37

t∈∅

2) прямая у=x+1 касается к графику функции f(x)=ах²+2x+3

а≠0, иначе прямая касалась бы прямой.

Пусть графики данных функций касаются в некоторой точке x₀=t. Тогда f(t)=аt²+2t+3

f'(x)=2ax+2;  f'(t)=2at+2

Уравнение касательной будет иметь вид:

y=f(t)+f'(t)(x-t)=аt²+2t+3+(2at+2)(x-t)=(2at+2)x-at²+3=x+1⇔2at+2=1  и -at²+3=1

2at+2=1⇒at=-0,5

2=at²=at·t=-0,5t⇒t=-4⇒a=1/8

3)  x(t)=0,5t³-3t²+2t

v(t)=x'(t)=1,5t²-6t+2

v(6)=1,5·6²-6·6+2=54-36+2=20 м/с

4,7(77 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ