1) (X+2)*(X+3)
2) (X-2)*(X-3)
3) (X-5)*(X-3)
4) (X-3)*(X-4)
5) (X-4)*(X+3)
6)(X-4)*(X+2)
7) (X-3)*(X+2)
8) (X+5)*(X-3)
Ну во-первых, раскладывается квадратный трехчлен по формуле:
a(x- первый корень)*(х- второй корень)
Корни мы находим либо решая этот трехчлен как квадратное уравнение, либо по теореме Виета (удобнее, запись становится короче).
Я решала в основном по теореме(исключение - трехчлен под номером 6). В общем, теорема Виета:
сумма корней равна числу b,но с противоположным знаком (т.е. число b в формуле ax²+bx+c)
А произведение корней (x1*x2) равно числу c(знак не меняем!)
Через дискриминант решаем как обычное квадратное уравнение, т.е. выписываем ниже трехчлен уже как уравнение (проще говоря, приписываем =0 к концу трехчлена)
Распишем цифры разрядов x, y, 4 искомого десятичного числа как:
"Зачеркнём последнюю цифру", получив двузначное число:
Соотношение между ними ("число уменьшится на 274"):
Преобразуем:
Цифра первого разряда (y) как функция цифры второго разряда (x):
У этого уравнения бесконечное множество решений. Однако, поскольку это цифра, то имеем ограничения:
x, y - натуральные числа или 0 (цифры),
То есть:
Единственным решением для целых x в заданном промежутке будет число (цифра!) 3.
Тогда y будет: y = 30 - 10*3 = 0.
Итак, ответ: