1. Построить график. Находим вершину параболы. Приводим к виду:
y = x² - 6*x +5 = (x² - 2*x*3 + 3²)-9 +5 = (x-3)² - 4
Получили уравнение ОБЫЧНОЙ ПАРАБОЛЫ ИКС КВАДРАТ, но с вершиной в точке А(3;-4)
Решив уравнение получаем нули функции - х1 = 1 и х2 = 5.
Рисунок с графиком к задаче в приложении.
ответы на вопросы:
1) У(0,5) = 1/4 - 6*0,5 +5 = 2,25 - ответ
2) Y(x) = -1
Решаем квадратное уравнение
x² - 6x - 6 = 0 и получаем: х1 ≈ 1,3 и х2 ≈ 4,7. (с ГРАФИКА).
Интервалы знакопостоянства.
Y>0 - X∈(-∞;-1]∪[5;+∞) - положительна.
Y<0 - X∈[-1;5] - отрицательна.
Внимание - важно. Функция непрерывная - квадратные скобки в написании интервалов у нулей функции.
Решив уравнение получаем нули функции - х1 = 1 и х2 = 5.
4. Возрастает после минимума - Х∈[3; +∞)
и убывает при Х∈(-∞;3]
Объяснение:
незачто!
Начнем выполнять эту процедуру
1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324
1 4 9 7 7 9 13 10 9 1 4 9 7 7 11 13 10 9
1 4 9 7 7 9 4 1 9 1 4 9 7 7 9 4 1 9
Цикл повторяется и состоит из 9 цифр: (1, 4, 9, 7, 7, 9, 4, 1, 9)
а) 451 число - это первое число цикла после 50 прокруток цикла, т.е. 451 число равно 1
б) S(460) содержит 51 цикл и еще первое число
51*(1+4+9+7+7+9+4+1+9)+1=2602
в) cумма 452 чисел обязательно включает 50 циклов, т. е. 50*51=2550 и еще 2 каких-либо подряд идущих числа:
1 и 4 1+4=5 2550+5=2555
4 и 9 4+9=13 2550+13=2563
9 и 7 9+7=16 2550+16=2566
7 и 7 7+7=14 2550+14=2564
7 и 9 7+9=16 2550+16=2566
9 и 4 9+4=13 2550+13=2563
4 и 1 4+1=5 2550+5=2555
1 и 9 1+9=10 2550+10=2560
9 и 1 9+1=10 2550+10=2560
так как некоторые суммы повторяются, то выписываем эти числа без повторений
ответ: 2555, 2560, 2563, 2564, 2566
c2=a2+b2 ; а2=с2-b2 ; b2=c2-a2 где c-гипотенуза, а и b-катеты. вот и все